

Genetic Ressources and Intellectual Property

Suhel al-Janabi Co-Manager

ABS Capacity Development Initiative

funded by

Facts:

- only approx. 2 of 30 Mio species known
- ~ 26.000 species / annum extinct
- hotspots: Developing Countries (80 %)

Article 1 CDB

Conservation of biological diversity	Sustainable use of it's components	Fair and equitable sharing of benefits arising from the utilization of genetic resources	
		by means of	
Facilitated access to genetic ressources	Technology and Know how – transfer	Adequate financing :	

Use of GR: Concept

9

Different type of genetic resources

Animal, plant, microbial

Used for different purposes "Utilization"

Research & development

- commercial
- non commercialbased on PIC / MAT

Different types of users operating in different sectors

- Pharmaceuticals / biotech
- seed and crop protection
- personal care and cosmetics
- botanicals and horticulture
- (farm) animal breeding

Focus: Commercial Applications of GRs

BIOSCIENCE AT A CROSSROADS:
IMPLEMENTING THE NAGOYA
PROTOCOL IN A TIME OF
SCIENTIFIC,
TECHNOLOGICAL AND INDUSTRY
CHANGE*

INDUSTRY	GLOBAL MARKETS (US\$)	
Pharmaceutical	\$955.5 billion (2011)	
Cosmetics	\$426 billion (2012) - natural component \$26.3 billion	
Food and beverage	\$11.6 trillion (2009) – functional beverages \$23.4 billion	
Seed	\$45 billion (2011)	
Crop Protection	\$40 billion (2010)	
Industrial Biotech	\$65-78 billion (including biofuels, 2010) – industrial enzymes \$3.3 billion	
Botanicals	\$84 billion (2010)	

Source: UNCTAD

Microorganisms & Enzymes

Biotechnology

Market

- Global turnover around \$ 75 billion
- Young industry with 3 main sub sectors (green, red, white) (e.g. biochemicals, biofuels, biomaterials and some consumer products)

R&D

- Objective: prove activity and overall feasibility at large scale
- Difficulty to understand business potential of academic R&D results & future industrial needs

Specifity of green biotech

- Focus: enzymes and metabolites from microorganisms that can endure difficult manufacturing conditions (e.g. pressure)
- Some companies do bioprospecting (e.g. in extreme environments) but most use existing collection or domestic GR
- Genome-mining :
 - search directly in soil or water without having to culture the organism
 - · Publication of microbial genetic sequences and ability to transfer genetic material digitally
- High degree of science and technology requires governmental support (e.g. biofuels) partnership to complete product development
- B 2 B rather rule than exemption

Food and Beverages

Market

- Turnover of \$ 11,6 trillion (2009), expected to reach \$15 trillion (2015) functional beverages: \$ 23,4 billion
- Mature, dynamique and diversified sector (9 billion people to feed!)

R&D

- Objective: health benefits (e.g. weight, energy,...)
- Low level of R&D (process improvement) but innovation is increasing: functional food, natural (e.g. additive free, free from...)

Specificity

- Pre R&D before corporate R&D Use of traditional knowledge as an indication of efficacy and safety
- Commodities dominate use large volumes reliability of supply is key
- Strong competition from ingredients in large user countries (e.g. olive, grapefruit)
- Breeding and crop protection are key, interest in wild plants for domestication
- Increasing integration of food with other sectors and increasing consumer interest in natural products (& sustainability) suggest an increasing trend of the use of GR (relevance of ABS)

Euphorbia Peplus

Pharmaceutical

The market

- Estimated global revenues \$ 955,5 (2011) expected to reach \$1,2 trillion (2016)
- Trend: large European and American based companies to do more R&D, with manufacturing in emerging markets, where domestic companies are also on the rise.

R&D

- Objective: prove activity
- Companies collaborate on R&D as budgets stall
- There are many ways to develop new actives. Most large natural R&D programs have closed. -> synthetic chemistry / biotechnology.
- Natural product programs are found in SME; governmental programs and universities.

Sector specificities / trends

- Patent cliff impact on corporate policies and investments
- Some collection of microorganism and marine organism but overall, limited need to access "fresh" GR from the South. Very tiny quantities of material needed.
- Domestic biodiversity and companies collections are first choice
- High degree of science and technology (e.g. genomics) allows
 - faster and deeper screening (especially on microorganisms)
 - possibility to grow them and overcome supply issue
- Decreasing interest in traditional knowledge due to focus on micro-organism

9

Argan

Polyphenoles

Cosmetics & Fragrance

The market

- For natural cosmetics, sales of \$ 26,3 billion (2011) out of a global turnover of \$426 billion
- Oils, fats, waxes, essential oils, oleoresins and plants extracts are used in 'pure natural' and in conventional cosmetics (very small quantities)

R&D

- Objective of the research:
 - Fragrance : feature characteristics of ingredients
 - Cosmetic: active principle or ingredients (additif, excipient formulation). Anti aging!
- Major companies focus on brand strategies and intermediaries do intensive research
- R&D investments differ: from minimal processing of raw material to advance research
- Speciality raw ingredients and natural compound to guide synthetisation
- Most ingredients are cultivated to master quality, secure supply and reduce costs

Sector specificities

- Strong regulation + new Chinese regulation narrows the focus of GR and R&D
- Brand image is key pressure to innovate demand for a «story » but short shelve life
- Mix use of patents due to short shelf life of products it's an expensive tool
- Sustainability issues are high on the agenda of B2C companies due to their marketing potential
- Niche interest in GR from the South & in traditional knowledge (to guide R&D)

Definition of Research and Development under the Nagoya Protocol

Art. 2

"Utilization of genetic resources" means to conduct research and development on the genetic and/or biochemical composition of genetic resources, including through the application of biotechnology as defined in Article 2 of the Convention.

"Biotechnology" as defined in Article 2 of the Convention means any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use.

R&D Process

Huge variations:

- level of science & technology used, investments in R&D (0 10 %)
- need to access GR (e.g. continuous, one-off, tiny samples)
- use of TK
- SOP (larger producer / retailer vs. small specialist intermediaries)
- level of internal R&D (from 100% in house to outsource of R&D)
- Different requirements with respect to IP / IP Protection

BIOETHANOL

