
The software patent debate

Andrés Guadamuz González*

It was never the object of patent laws to grant a mono-

poly for every trifling device, every shadow of a shade

of an idea, which would naturally and spontaneously

occur to any skilled mechanic or operator in the ordinary

progress of manufactures. Such an indiscriminate cre-

ation of exclusive privileges tends rather to obstruct

than to stimulate invention. It creates a class of speculat-

ive schemers who make it their business to watch the

advancing wave of improvement, and gather its foam

in the form of patented monopolies, which enable them

to lay a heavy tax on the industry of the country, without

contributing anything to the real advancement of

the arts.

US Supreme Court, Atlantic Works v Brady, 1882

1. Introduction
The approval procedure of the proposed Directive

on the Patentability of Computer-implemented

Inventions1 (the CII Directive) has sparked a heated

debate regarding the patentability of software2 in

Europe, producing one of the most contentious

intellectual property law policy discussions of recent

years.

While the CII Directive has been rejected by the

European Parliament,3 the road that led to the final

vote was paved with arguments and counter-

arguments about the role that patents should play in

the protection of software. This debate, which had

strong political implications, was tinted by emotional

appeals, threats, inaccuracies, and downright fabrica-

tions from both camps from the initial barrage. This

article examines the arguments that are raised and

considers their validity.4

Before looking at these arguments I will explain,

through reference to some recent cases, the state-of-

the-art regarding the legal protection of software.

While the literature in this area is extensive and

goes back several years, the time has come to take

a step back and look at the debate again from its

roots.

2. Software copyright: copy wrong?
Since it became widespread and commercially

valuable, it has been remarkably difficult to classify

software within a specific category of intellectual

property protection. This is because characteristics

of software are unique among protected intellectual

creations, presenting particular difficulties for those

Key issues

� The recent demise of the proposed Directive on

Computer-Implemented Inventions has over-

shadowed its complex background and the

interplay of conflicting interests that it brought

into play.

� Copyright (which already protects all software)

and patent law (which protects much software

in the United States but relatively little else-

where) both have their strengths and weak-

nesses as legal rights. Little evidence has,

however, been adduced as to the incentive

effect of either of these legal regimes.

� The decision to withdraw the proposed Direc-

tive does not mean that the issues addressed

in it and the interests affected by it have been

resolved. Real debate has merely been deferred

and it is important to recognize them clearly

before the debate is resumed.

* Lecturer in E-Commerce Law, University of Edinburgh and Co-director of

the AHRC Research Centre for Studies in Intellectual Property and

Technology Law.

1 Proposal for a Directive of the European Parliament and the Council

on the Patentability of Computer-Implemented Inventions, COM[2002]

92, http://www.europa.eu.int/comm/internal_market/indprop/docs/comp/

com02-92en.pdf.

2 There are various definitions of software. That preferred here is US

Code Title 17, ch 1, s 101 which defines a computer program as ‘a set of

statements or instructions to be used directly or indirectly in a computer

in order to bring about a certain result’.

3 FFII, European Parliament says No to Software Patents (2005),

http://wiki.ffii.de/Ep050706En

4 The author acknowledges that it is possible that the paper will not

be free from some of his biases with regard to the validity of software

patents. The author’s position is of strong scepticism for software

patents.

Journal of Intellectual Property Law & Practice ARTICLE

|
|
|
|
|
|

1 of 11

� The Author (2006). Published by Oxford University Press. All rights reserved.

 Jnl. Intellectual Property Law and Practice Advance Access published January 10, 2006

http://www.europa.eu.int/comm/internal_market/indprop/docs/comp/
http://wiki.ffii.de/Ep050706En

drawing analogies with existing legal subjects.

Commentators have sought to classify it under copy-

right,5 patents,6 both copyright and patents,7 trade

secrets,8 or even as a sui generis software right.9 It is

indicative of the complexity of the debate and the

problems in defining the protection of software that

while this issue has been the subject of discussion

for more than 20 years recent developments suggest

that there is still no solution in sight.

But what is it about software that makes its unequi-

vocal classification so difficult? The problem may lie

in the fact that software is not a monolithic work:

it possesses several elements that could fall within dif-

ferent categories of intellectual property protection.

. .

Software is not a monolithic work: it possesses
several elements that can fall within different
categories of intellectual property protection
. .

If we define software as a set of instructions to a

computer that bring about a certain result,10 the

manner in which those instructions are expressed

should inform us about the type of intellectual prop-

erty protection that applies. These instructions are

initially expressed as source code—lines of instruc-

tions in a computer language. Because the source code

is expressed in the written form, software may logi-

cally be defined as being subject to copyright protec-

tion as a literary work. This was the initial approach

towards software protection in most of the existing

legislation.11 However, software is not source code

alone; to be able to operate in a computer, software

has to be translated into object code12 by a process

of compilation. This translation has no bearing

on the type of protection awarded to the software

because the object code is a direct result of the source

code and should arguably be linked to its fate.13

A problem arises with the strict categorization of

software as a literary work because software has other

elements that may not be subject to copyright pro-

tection. Software is not merely a literary expression:

its lines of code have a function that is independent

of the grammatical construction of the lines of code.

The source code of a computer program, while

completely different from that of another program,

may yet have the same function and produce a similar

set of instructions that achieve a similar result. This is

the basis of the idea/expression dichotomy14 that is

so frequently debated.15

Although there is some case law regarding literal

infringement,16 the courts have struggled with the

non-literal aspects of software infringement. Is copy-

right infringed where the functional aspects of a

computer program are copied? The answer has been

a very complex and lengthy ‘yes’. This is evidenced

by the initial application of the idea-expression

dichotomy to software,17 then by the inception and

reliance on the rather clunky doctrine of the so-

called Abstraction-Filtration-Comparison18 in the

United States, which has been both applied and criti-

cized by UK courts.19 Most recently, protection of

the functional elements of computer software has

been revisited in the United Kingdom in Navitaire v

easyJet:20 a software company specializing in online

airline booking software sued easyJet and software

5 J Dunn, ‘Defining the Scope of Copyright Protection for Computer

Software’ [1986] 38 Stanford Law Review, 497.

6 E Gratton, ‘Should Patent Protection Be Considered for Computer

Software-Related Innovations?’ [2002] 7 Computer Law Review &

Technology Journal 2, 223.

7 R Widdison, ‘Software Patents Pending?’ [2000] The Journal of Informa-

tion, Law and Technology 3, http://www2.warwick.ac.uk/fac/soc/law/elj/

jilt/2000_3/widdison/.

8 DW Carstens, ‘Legal Protection of Computer Software: Patents, Copy-

rights, and Trade Secrets’ [1994] 20 Journal of Contemporary Law 13.

9 JC Philips, ‘Sui Generis Intellectual Property Protection for Computer

Software’ [1992] 60 George Washington Law Review 997.

10 Definition used in n 2 above.

11 Harmonized in Europe through the Council Directive 91/250/EEC on the

Legal Protection of Computer Programs, OJL 122/42. Also see Computer,

Designs and Patents Act 1988, s 3(1) b.

12 Object code is machine-readable instructions that can be directly executed

by the computer.

13 This idea is not new: note, ‘Copyright Protection of Computer Program

Object Code’ [1983] 96 Harvard Law Review 1723.

14 For more about the dichotomy, S Ang, ‘The Idea-Expression Dichotomy

and Merger Doctrine in the Copyright Laws of the US and the

UK’ [1994] 2 International Journal of Law & Information Technology 2,

111.

15 eg D Luettgen, ‘Functional Usefulness vs. Communicative Usefulness: Thin

Copyright Protection for the Nonliteral Elements of Computer Programs’

[1996] 4 Texas Intellectual Property Law Journal 233; LL Weinreb,

‘Copyright for Functional Expression’ [1998] 111 Harvard Law Review

1149.

16 Most recently Cantor Fitzgerald International v Tradition (UK) Ltd [1999]

Masons CLR 157.

17 Whelan Associates Inc v Jaslow Dental Laboratory Inc [1987] FSR 1.

18 Computer Associates International, Inc v Altai, Inc (2nd Cir 1992) 61 USLW

2434. In short, this test abstracts all the elements found in the computer

program, filters out the unprotectable ones and then compares what is

left to search for similarities.

19 John Richardson Computers Ltd v Flanders and Chemtec Ltd [1993] FSR

497; Ibcos Computers Ltd v Barclays Mercantile Highland Finance [1994]

FSR 275.

20 Navitaire Inc v easyJet Airline Co [2004] EWHC 1725 (Ch).

2 of 11 |
|

|
ARTICLE

Journal of Intellectual Property Law & Practice

http://www2.warwick.ac.uk/fac/soc/law/elj/

developers BulletProof, alleging that they had copied

substantial functional elements from their reservation

software. There Pumfrey J significantly diminishes

copyright protection of functionality:

Copyright protection for computer software is a given,

but I do not feel that the courts should be astute to

extend that protection into a region where only the

functional effects of a program are in issue. There

is a respectable case for saying that copyright is not,

in general, concerned with functional effects, and

there is some advantage in a bright line rule protecting

only the claimant’s embodiment of the function in

software and not some superset of that software.21

It is precisely the difficulty in protecting literal and

non-literal elements of software that has created the

perceived need for the patentability of software, since

patents protect the functional aspects of works. There

is no idea/expression dichotomy in patent law. If

an idea fulfils the requirements for patentability—

patentable subject matter, novelty, and inventive

step—it will be awarded patent protection.22

American courts had already opened the door to the

patentability of computer programs by allowing a

patent for a software that controlled manufacturing

processes as early as 1981.23 Subsequent cases have

expanded patentability of software in the United

States.24 With the patent door open, and the seeming

chaos in the copyright protection camp, the subse-

quent explosion in successful applications by software

companies in the United States was no surprise.25

3. The European Perspective
The road to the present

While the United States has been allowing practically

unlimited patentability of software in recent years,

Europe is following a different path, for two reasons.

First, there is a clear-cut bias towards copyright

protection through the Directive on the Legal

Protection of Computer Programs.26 Second, Article

52 (2)(c) of the European Patent Convention (EPC)

specifically states that computer programs ‘as such’

should not be regarded as patentable subject matter.

However, practice and case law have allowed the

limited patentability of the so-called ‘computer

implemented inventions’27 that involve a technical

effect (or contribution, or process).28 These cases

recognize a limited patentability threshold where an

invention that will be implemented through a com-

puter fulfils the requirement of technicality.29 While

the source code, or the literary and textual element

of software, cannot be patented, software that pro-

duces some sort of effect in the same way that any

other invention does will receive protection. Precise

definition of this technical effect or process has been

hard to pinpoint for more than 20 years since it was

first enunciated by the Technical Board of Appeal of

the European Patent Office (EPO).30

Decisions regarding software patentability follow

arguments that resonate with those regarding

the literal and functional protection of software in

copyright. The EPO Board of Appeal shows

this in VICOM, in situations where a computer

process has a merely abstract and mathematical

(unpatentable) effect are distinguished from those in

which a computer process has a technical (one could

read ‘functional’) effect and should therefore be sub-

ject to patentability.31 Further cases, toying with this

distinction, have offered reasoning that is often mud-

dled or contradictory.32 Nevertheless, a few principles

can be gleaned from the existing case law. First, soft-

ware ‘as such’, meaning programs ‘considered to be

mere abstract creations’, remains unpatentable.33

Second, the technical effect subject to the application

must make a considerable contribution to the prior

art. For example, Merrill Lynch says that ‘There

must be some technical advance on the prior art in

the form of a new result.’34

21 ibid, para 94.

22 WR Cornish and D Llewelyn, Intellectual Property: Patents, Copyright,

Trade Marks & Allied Rights (5th edn, 2003) 173–207.

23 Diamond v Diehr 67 L Ed 2d 155 [1981].

24 Amongst others Paine, Webber, Jackson & Curtis Inc v Merril Lynch, Pierce,

Fenner Smith Inc, 564 F Supp 1358 [1983]; In re Alappat, 33 F. 3d 1526

[1994].

25 eg software patent applications had increased by 16% per year from 1986

to 1997; J Bessen and RM Hunt, An Empirical Look at Software Patents,

Research on Innovation Working Paper 03-17/R (2004) http://www.

researchoninnovation.org/swpat.pdf.

26 n 11 above.

27 The author finds that this legal concept has been hijacked as a euphemism

for the more charged term ‘software patent’.

28 VICOM [1987] 2 EPOR 74; Merrill Lynch’s Application [1989] RPC 561;

Gale [1991] RPC 305; Fujitsu [1997] RPC 608.

29 Widdison (n 7 above).

30 In VICOM, T208/84.

31 ibid.

32 Contrast, eg VICOM with Fujitsu.

33 IBM, T0935/97, 5.2.

34 n 28 above 569.

Andrés Guadamuz González · The software patent debate ARTICLE

|
|
|
|
|
|

3 of 11

http://www

Nevertheless, even though most of the existing

rulings share common elements, the real life applica-

tion of these principles has been uneven in Europe,

as is often the case with vague and ill-defined legal

concepts. This lack of clarity prompted the European

Commission to propose the CII Directive,35 which

was meant to overhaul European patent practices by

making the wording of ‘technical effect’ more pre-

cise.36 The proposed Directive contained its own def-

inition of what constitutes a technical contribution,

similar to the requirements of prior art encountered

in the case law, stating that it meant ‘a contribution

to the state-of-the-art in a technical field which is not

obvious to a person skilled in the art’.37 What made

this Directive controversial—and eventually spelt its

downfall—was its approach towards the patentability

of software ‘as such’, in contrast to technical effects.

Article 5 clearly states,

Member States shall ensure that a computer-

implemented invention may be claimed as a product,

that is as a programmed computer, a programmed

computer network or other programmed apparatus,

or as a process carried out by such a computer, com-

puter network or apparatus through the execution of

software.

As mentioned, the practice in existing cases was

not to patent computer programs ‘as such’, which

seemed to exclude computer programs that provided

a process in itself that was not technical. The problem

with Article 5 is that it opened the door to the

patentability of software ‘as such’, leading to com-

ments that it opened the door to American-style

unlimited patentability of software.38

This is not the place to describe the tortuous pro-

cess that led to the eventual demise of the CII Direc-

tive. Article 5 was, however, at the centre of an almost

unprecedented display of lobbying and activism, trig-

gered by an apparently straightforward directive deal-

ing with the application and harmonization of some

obscure legal technicalities which most people in the

mainstream had never heard of. The proposal was

met with vicious opposition from open source

and free software activists,39 whose opposition was

echoed by some Parliamentary groups. The European

Parliament was instrumental in the voting down of

the Directive by eventually rejecting the Commis-

sion’s text by 648 to 14 votes on 6 July 2005.40

Technicalities in ‘technical’

The demise of the Directive leaves the issue of the

patentability of software in Europe in the same situa-

tion as it was before the proposal in 2002. Since exist-

ing practice and case law still applies, it is important

to consider them closely and try to gain an insight

as to what may happen in the future.

The official line that only computer programs that

contain a technical contribution will be patentable

has been followed as well by the European Patent

Office in their Examination Guidelines:

If a computer program is capable of bringing about,

when running on a computer, a further technical effect

going beyond these normal physical effects, it is not

excluded from patentability, irrespective of whether it

is claimed by itself or as a record on a carrier41

However, the same Guidelines apparently recog-

nize that the concept of technical contribution is

problematic, recommending that examiners should

first determine the novelty and inventive step of the

claim before testing for technical contribution.42

United Kingdom Patent Office (UKPO) practice

followed similar lines to the rest of Europe. However,

the UKPO recognized that applicants and practition-

ers were confused about the technical contribution

requirements, evidenced in their early consulta-

tion regarding software patents.43 This uncertainty

prompted the UKPO to organize a series of work-

shops in early 2005 in pursuit of a workable defini-

tion of ‘technical contribution’.44 Those attending

the workshops were presented with several different

35 n 1 above.

36 A Duffus, ‘The Proposal for a Directive on the Patentability of Computer-

implemented Inventions’ [2002] 16 International Review of Law,

Computers & Technology 3, 331.

37 Art 2(b).

38 eg criticisms FFII, EU Software Patent Directive Core Amendments [2003],

http://swpat.ffii.org/papers/europarl0309/cons0401/tab/index.en.html.

39 Some reasons for this opposition can be found here: A Guadamuz, ‘Legal

Challenges to Open Source Licences’ [2005] 2 SCRIPT-ed 2, 163.

40 n 3 above.

41 EPO, Examination Guidelines (June 2005), s C, Ch 4, 2.3.6; s C, Ch 4, 2.3.6.

42 ibid.

43 United Kingdom Patent Office, Should Patents be Granted for Computer

Software or Ways of Doing Business? (March 2001), http://www.patent.

gov.uk/about/consultations/conclusions.htm.

44 United Kingdom Patent Office, The European Computer Implemented

Inventions Directive—Report on the Technical Contribution Workshops

[2005], http://www.patent.gov.uk/about/ippd/issues/eurocomp/full_

report.pdf.

4 of 11 |
|

|
ARTICLE

Journal of Intellectual Property Law & Practice

http://swpat.ffii.org/papers/europarl0309/cons0401/tab/index.en.html
http://www.patent
http://www.patent.gov.uk/about/ippd/issues/eurocomp/full_

definitions of ‘technical contribution’45 and given

three different types of case studies, to try to deter-

mine which definition fitted best. The case studies

consisted of applications that, according to the UKPO,

were (i) not patentable under the present law, (ii)

patentable, and (iii) borderline or doubtful according

to the existing guidelines.

The results showed that Definition A would result

in considerably more patents than Definition B.46

Many of the other definitions fell along that same

axis, with two exceptions (Table 1).

These two definitions were less controversial and,

according to the study, were ‘well liked’. Definition

F was minimalist: its shortness and elegance may have

played a part as to why it was chosen by the partici-

pants. Definition L was penned by the UKPO as its

interpretation of what the current cases in the UK

require (Table 2).

The workshop’s methodology is open to criticism

on many grounds, including the reasoning by which

some definitions were omitted.47 Also, the willingness

to reach a middle ground assumed greater priority

than the need to assess the underlying reasons for

the study. The report repeatedly comments on how

restrictive the definitions are, thus assigning positive

or negative values to them. A strong opponent

of software patentability might think that the most

restrictive definition was preferable to the most per-

missive one, and vice versa. By favouring Definition

L, the study apparently concludes that at least many

workshop participants are content with the status

quo and are happy to rely on it. Is this a good thing?

Two recent cases assist in delineating the status

quo. The first, Halliburton Energy Services, Inc. v Smith

International48 involved two technologies: a cone drill

to dig for gas and oil and a software simulation pro-

gram for designing the drill bits. Halliburton sued

Smith, claimed that it held patents in both the drill

and design software49 and that Smith was using simi-

lar software to produce comparable results. Smith

questioned the patents’ validity. The design software

patent contained a long technical description of drills

and drill bits, and a description of the algorithm50

used to design the software. The instructions to the

person skilled in the art were extremely detailed and

could only apply to that particular desired result.

This seems precisely to be the type of patent that has

a technical effect, however one defines it. Pumfrey J

agreed51 that there was nothing wrong with the

patent per se and that it fulfilled the requirements of

Table 1. Definitions A and B

Definition A (CII Directive) Definition B (FFII)

‘Technical Contribution’ means a contribution to the

state-of-the-art in a field of technology which is new and

not obvious to a person skilled in the art. The technical

contribution shall be assessed by consideration of the

difference between the state-of-the-art and the scope of the

patent claim considered as a whole, which must comprise

technical features, irrespective of whether or not these are

accompanied by non-technical features.

‘Technical Contribution’ means a contribution made by

a claimed invention, considered as a whole, to the

state-of-the-art in a field of technology. ‘Technical’

means belonging to a field of technology.

New teaching about the use of controllable forces

of nature under the control of a computer program,

beyond the implementation of the data processing

procedure itself, is technical.

The processing, handling, representation, and

presentation of information by a computer program are

not technical, even where technical devices are employed

for such purposes.

45 Of which two were used in all the workshops, the definition from the CII

Directive and a definition provided by the Foundation for a Free Informa-

tion Infrastructure (FFII), one of the main critics of software patents.

46 ibid.

47 In particular, some of the tabled definitions from the European Parliament

when criticizing the CII Directive. See the Consolidated version of

the amended directive ‘on the patentability of computer-implemented

inventions’, Europarl 2003–09-24.

48 Halliburton Energy Services, Inc v Smith International [2005], EWHC

1623 (Pat).

49 Patent EP1117894 for the software and EP1112433 for the cone drill.

50 An algorithm is a set of instructions for accomplishing some task which

form one initial state to an expected result.

51 Halliburton v Smith (n 48 above) paras 215–218.

Andrés Guadamuz González · The software patent debate ARTICLE

|
|
|
|
|
|

5 of 11

technicality.52 In this regard Halliburton represents a

perfect example of a software patent that contains an

unequivocal technical effect.

The second case is CFPH LLC’s Application.53

CFPH applied for a patent with one claim (later

divided into two applications).54 The patent claimed

a networked system for placing wages for current

events in real time, where each event for which a

wage was possible had a minimum wage amount.

The system then checked the user’s available credit

and displayed only those events where the user could

place a bet. The UKPO rejected the claim because

it did not produce a technical effect and because it

described a business method, which is also not

patentable subject-matter.

On appeal, Deputy Judge Peter Prescott QC admit-

ted having problems with the concept of technical

contribution existing in practice and case law. Fol-

lowing a detailed analysis of existing cases, he offered

a possible test for technicality:

A patentable invention is new and non-obvious

information about a thing or process that can be

made or used in industry. What is new and not obvi-

ous can be ascertained by comparing what the inven-

tor claims his invention to be with what was part of

the state of the existing art. So the first step in the

exercise should be to identify what it is the advance

in the art that is said to be new and non-obvious

(and susceptible of industrial application). The second

step is to determine whether it is both new and not

obvious (and susceptible of industrial application)

under the description ‘an invention’ (in the sense of

Article 52). Of course if it is not new the application

will fail and there is no need to decide whether it

was obvious.55

This test seeks to apply the EPO guidelines as far

as possible, but emphasizing the case law and EPO

decisions on the strict requirement of an inventive

step that has a technical application.56 Unfortunately,

this analysis did not advance our understanding of

‘technical’, other than restating that the invention

should have industrial application. The Deputy Judge

was, however, correct to affirm that software, by the

mere act of being software, should not be excluded

from patentability: if it involves an inventive step,

Table 2. Definitions F and L

Definition F Definition L (Current UK Law)

A technical contribution should make a substantial, non-

obvious advance to the state of knowledge in a technical

field, and should not be representable as pure logic.

‘Technical Contribution’ means a contribution to the

state-of-the-art in a field of technology which is new and

not obvious to a person skilled in the art. The technical

contribution shall be assessed by consideration of the

difference between the state-of-the-art and the scope of

the patent claim considered as a whole.

In the case of a computer implemented invention the

‘Technical Contribution’ must be realisable within the

apparatus on which it is implemented.

A ‘technical contribution’ cannot occur as a result of the

coding of an algorithm or lie within the program code.

A program may only make a ‘technical contribution’ when

the implemented function is used to contribute to the

difference between the scope of the claim and the prior art.

A ‘Technical Contribution’ cannot occur when the

contribution lies solely in the application of a ‘business

method, mental act, or mathematical method’.

52 The patent was, however, invalid for inadequate disclosure: according to

the court, the threshold of disclosure is much higher in highly technical

areas such as this: para 133.

53 CFPH LLC Application [2005] EWHC 1589 (Pat).

54 Applications GB 02268843 and 04193173.

55 CFPH Application (n 53 above) at 95.

56 ibid, at 94.

6 of 11 |
|

|
ARTICLE

Journal of Intellectual Property Law & Practice

it could be subject to patent protection. As he

concluded:

‘The question to ask should be: is it (the artefact or

process) new and non-obvious merely because there

is a computer program? Or would it still be new and

non-obvious in principle even if the same decisions

and commands could somehow be taken and issued

by a little man at a control panel, operating under

the same rules? For if the answer to the latter question

is ‘Yes’ it becomes apparent that the computer pro-

gram is merely a tool, and the invention is not about

computer programming at all.57

In the author’s opinion, this presents the best test

for patentability of software yet devised: the ‘little

man’ test. If the software is immaterial to the claim,

and if the software fulfils other patentability require-

ments, then the patent should be awarded. Given

such a useful definition, it is strange that the UKPO

has missed some of the finer points of this ruling in

its new recommendations regarding patentability.58

The new examination recommendations come in the

aftermath of Halliburton and CFPH. While dealing

with other considerations, they also comment on

‘technical contribution’. While acknowledging the

new two-step test in CFPH, the guidelines state that

‘the change in approach does not change the bound-

ary of what is patentable’. I beg to differ strongly with

this conclusion.

4. To patent or not?
It is clear that the existing procedure is well estab-

lished in favour of some limited patentability of soft-

ware, even after the defeat of the Directive. European

Commissioner Benita Ferrero-Waldner has pointed

out that, despite the vote, ‘patents for computer-

implemented inventions will continue to be issued

by national patent offices and the European Patent

Office under existing law’.59 This is an accurate state-

ment: existing practice has led to a large number of

European patents protecting processes found in com-

puter software.60 While the figures are far lower than

in the United States,61 the number of approved soft-

ware patents is higher than would be expected in a

region where computer programs are supposed to

be excluded as patentable inventions.

It would be disingenuous to believe that the matter

of software patents will be debated less in the coming

years. If the practice is in favour of patentability, but

legal definitions remain unclear, the time is ripe to

question whether the patentability of software is itself

beneficial. This section analyses the validity of some

of the arguments for and against the patentability of

software.

Arguments for patentability

A strongly compelling argument for the patentability

of elements found in a computer program is similar

to those arguments supporting the patentability of any

other invention. If a computer program contains ele-

ments that meet patentability requirements, it should

be awarded software protection. Since software devel-

opment is a technical field like any other its results

should be patentable.62 This argument should be

examined and expanded in light of the traditional

justifications for the existence of patents in general.

Patents are commonly justified as a contract

between inventors and society, where the former are

awarded a limited monopoly for a period of time

while the latter obtains a description of how others

can work the invention.63 If this argument is valid,

society can only benefit from the patentability of

some software inventions because the technology to

work those ideas will be disclosed in the application,

something that would not happen if the software

was protected as a trade secret or under copyright.

Copyright owners do not need to publish the source

code, which makes working on the software more dif-

ficult. Some even argue that the disclosure element of

57 ibid, at 104.

58 United Kingdom Patent Office, Patents Act 1977: Examining for Patent-

ability, 29 July 2005, http://www.patent.gov.uk/patent/notices/practice/

examforpat.htm.

59 European Parliament, Debate: Patentability of Computer-Implemented

Inventions, 6 July 2005, http://tinyurl.com/8op7z.

60 It is difficult to obtain actual data. According to FFII the EPO has

approved more than 20 000 software patents (http://swpat.ffii.de/patents/

stats/index.en.html). According to the United Kingdom Patent Office, of

about 30 000 applications received each year, 20% are related to software,

see http://www.patent.gov.uk/about/ippd/issues/cii-ukposition.htm.

61 In 1980 there were about 1080 software patents issued, while in 2002 there

were 24 891 patents issued. Bessen and Hunt (n 25 above), p 47.

62 An argument often made by patent expert Greg Aharonian in his mailing

list, PATNEWS. For example, PATNEWS 20050217 contains a discussion

of why software is just a technical abstraction, and therefore, subject to

patent protection.

63 JP Kesan and M Banik, ‘Patents as Incomplete Contracts: Aligning Incen-

tives for R&D Investment with Incentives to Disclose Prior Art’ [2000]

2 Journal of Urban and Contemporary Law 23.

Andrés Guadamuz González · The software patent debate ARTICLE

|
|
|
|
|
|

7 of 11

http://www.patent.gov.uk/patent/notices/practice/
http://tinyurl.com/8op7z
http://swpat.ffii.de/patents/
http://www.patent.gov.uk/about/ippd/issues/cii-ukposition.htm

the patent system allows for more openness in the

software development market.64 This argument is

compelling when one sees that the software industry

requires openness and interoperability of standards

in order to let programs interact with one

another. However, openness can be obtained within

a copyright-only framework of protection through

the use of alternative development models such as

open source software, where the source code is

made available to the public, ensuring openness and

interoperability.65 Openness can also be obtained by

the proliferation of non-proprietary standards and

standard-setting bodies66 that establish a common

framework for development, which can be achieved

without patents.

Another traditional justification of the patent sys-

tem is that it serves as a just reward for the effort that

has gone into the making of the invention: software

should be no different in this respect. The reward in

the shape of a patent serves as an incentive to innova-

tors, as it can be argued that developers need means

to recuperate their investment. Says Gratton:

Incentive is important for software developers—to

reward those who invest their time and money in

technological invention and innovation, and thus to

encourage such investments, has been the classic func-

tion of patents. In other areas of innovation, patents

have encouraged substantial investment in research and

development and have generally promoted innovation.

There is no reason why the position should be

any different for software developers or businesses.67

This argument would be credible were it not for

the fact that it has been established in the literature

that patents work really well as an incentive for

innovation in some areas of technological innovation,

but not in others.68 Software development is a vibrant

area of innovation, despite the uncertain nature of its

legal protection. The success of open source software

also serves to diminish the claim, as there is a field of

endeavour where thousands of developers innovate

without the incentive of patent protection.69 More-

over, there is little direct evidence that software

patents generate an incentive for innovation. In a

report to the European Parliament, Bakels and

Hugenholtz point out that there is not enough

empirical evidence to demonstrate a direct causal

relationship between innovation in the software

industry and patents.70 Correlation does not mean

causation.

. .

Software development is a vibrant area of
innovation, despite the uncertain nature
of its legal protection
. .

Besides the traditional justifications for patentabil-

ity, the main other argument for software patents has

been the economic case. The patenting of computer

inventions benefits large firms because they have the

resources to apply for patents.71 However, most of the

literature defending computer implemented inven-

tions argues that software patents also benefit small

and medium enterprises (SMEs), because small and

medium developers need patent protection if they

are to enhance their profitability. A group of SMEs

supporting the CII Directive gives several reasons

why software patents are advantageous to their inter-

ests, including the failure of copyright to protect

functional elements in software, provision of an

incentive to investors, and better channels for earning

profits from licensing.72

Problems with this position have been pointed

out even in pro-patentability papers and studies.73

A significant objection is that SMEs are extremely

64 BL Smith and SO Mann, ‘Innovation and Intellectual Property Protection

in the Software Industry: An Emerging Role for Patents?’ [2004]

71 University of Chicago Law Review 241.

65 M Valimaki, ‘A Practical Approach to the Problem of Open Source and

Software Patents’ [2004] 26 EIPR 12, 523.

66 For more about standard-setting bodies and IP, see RP Feldman, ML Rees,

B Townshend, ‘The Effect of Industry Standard Setting on Patent Licensing

and Enforcement’ [2000] 38 Communications Magazine IEEE 7, 112; C

Shapiro, ‘Navigating the Patent Thicket: Cross Licenses, Patent Pools,

and Standard-Setting’ in J Lerner, A Jaffe and S Stern (eds), Innovation

Policy and the Economy (2001), p. 119–50.

67 Gratton (n 6 above) at 251.

68 It has been well established that pharmaceutical and chemical industries

are more likely to have innovations due to patents, while other fields are

not as affected. E Mansfield, ‘Patents and Innovation: An Empirical Study’

[1986] 32 Management Science 175; and A Silberston, The Economic

Importance of Patents (1987).

69 For more details about this, see S Weber, The Success of Open Source

(2004).

70 R Bakels and B Hugenholtz, The Patentability of Computer Programs.

Discussion of the European-Level Legislation in the Field of Patents for

Software (2002) JURI 107 EN, p 17.

71 Gratton (n 6 above) at 249.

72 Computing Technology Industry Association, SME Manifesto on Patents

for Computer-Implemented Inventions (April 2005), http://www.

softwarechoice.org/download_files/SME_manifesto_0105.pdf.

73 RJ Mann, ‘Do Patents Facilitate Financing in the Software Industry?’

[2005] 83 Texas Law Review 961, 1009.

8 of 11 |
|

|
ARTICLE

Journal of Intellectual Property Law & Practice

http://www

unlikely to rely on patents for protection of their soft-

ware because of expense, fearing to enter into patent

disputes with wealthier firms.74 Furthermore, there

appears to be little agreement even among SMEs

about whether software patents are needed. Several

studies have found a sharp divide between indepen-

dent developers and some smaller businesses already

established in the industry—those in an already

advantageous position seem to be in favour of

patentability, while smaller independent firms are

against.75 Similarly, a study to the European Com-

mission dealing with the patentability of software in

Europe comments:

There is considerable evidence of concern by Euro-

pean independent software developers about the

potential effects of patents on the development of

computer program related inventions.76

An area in which software patents evidently prove

to be an advantage is investment. A well-established

link exists in the United States between intellectual

property assets and investment in a business, particu-

larly from venture capitalists.77 However, if software

patents allow investment, this benefit could be coun-

terbalanced by software patentability’s potential dis-

advantages, which will be analysed next.

Arguments against patentability

Reading some of the many websites that oppose soft-

ware patents, one obtains a different picture of the

ongoing debate. Many of these sites have no cohesive

and relevant criticisms of software patentability in

the European context. These sites offer considerable

equivocation, misunderstanding, exaggeration, and

even conspiracy theory, which do not assist the

debate. One such site claims that software patents

are pushed by greedy patent lawyers whose goal is

to destroy copyright protection of software because

copyright is free.78 But that is not to say that

well-stated and valid arguments against patentability

do not exist.

One argument that carries more weight in the

literature has been that software patents encourage

the creation of the so-called ‘patent thickets’: a dense

undergrowth of interrelated patents that researchers

have to navigate in order to develop new technolo-

gies. There are two different types of thickets. The

first one is a single technological innovation that

may be protected by several patent holders. This situ-

ation would require anyone interested in developing

software in that area to obtain separate licences

from numerous owners.79 The second type of thicket

occurs when a product is covered by a large number

of patents, not just one.80 Patent thickets increase

the cost of innovation, they encourage inefficiency

through the creation of complex cross-licensing rela-

tions between companies, and they may even stop

newcomers entering the market if they fail to pene-

trate the thicket. However, at least one commentator

takes issue with critics of patent thickets: even where

thickets exist, they have no effect on innovation

through research and development spending.81

Another argument addresses the nature of soft-

ware. If software has both functional and literary

elements, the prominence of one of those elements

as the software’s defining characteristic should give

us a better idea of how to protect it. As Eischen

eloquently explains:

Is software an act of engineering or communication? If

software is a rational endeavor, improving quality

involves better and more resources: better manage-

ment, better tools, more disciplined production, and

more programmers. If software is a craft, improving

quality involves the exact opposite: focusing on less

hierarchy, better knowledge, more-skilled program-

mers, and greater development flexibility.82

This argument is a key reason why discussion

about the nature of software protection persists after

74 For more on this, see Bakels and Hugenholtz (n 72 above) 25; P Tang,

J Adams and D Paré, Patent Protection of Computer Programmes, European

Commission Report (2001).

75 PbT Consultants, The Results of the European Commission Consultation

Exercise on the Patentability of Computer Implemented Inventions

(July 2001), http://europa.eu.int/comm/internal_market/en/indprop/

comp/softanalyse.pdf.

76 R Hart, P Holmes and J Reid, The Economic Impact of Patentability of

Computer Programs, European Commission, ETD/99/B5-3000/E/106

(2000), p 3.

77 For a thorough study into this, see Mann (n 75 above).

78 eg the arguments presented here (http://www.nosoftwarepatents.com/en/

m/dangers/index.html).

79 Shapiro (n 67 above).

80 J Bessen, Patent Thickets: Strategic Patenting of Complex Technologies

(2003) SSRN Working Papers, http://papers.ssrn.com/sol3/papers.cfm?

abstract_id¼327760.

81 Mann (n 75 above), 999–1004.

82 K Eischen, ‘Software Development: An Outsider’s View’ [2002] 35

Computer 536, 38.

Andrés Guadamuz González · The software patent debate ARTICLE

|
|
|
|
|
|

9 of 11

http://europa.eu.int/comm/internal_market/en/indprop/
http://www.nosoftwarepatents.com/en/
http://papers.ssrn.com/sol3/papers.cfm?

all these years. The problem is that each camp holds

an entrenched view of what software is.

Some of the most vocal and active criticisms of

software patentability lie within the Free and Open

Source (FOSS) movements. A major plank upon

which they base their opposition is that most open

source licences are copyright licences. For example,

of the 58 licences certified by the Open Source

Initiative (OSI)83 as complying with the open source

definition, only the Apache Software License and the

Open Software License contain clauses assigning

patents owned by the licensor. The most used FOSS

licence—the GNU General Public Licence (GPL)—

goes further than providing a mere assignment, as it

states in its preamble part of the case against software

patents from the perspective of FOSS ideals:

any free program is threatened constantly by software

patents. We wish to avoid the danger that redistribu-

tors of a free program will individually obtain patent

licenses, in effect making the program proprietary.

To prevent this, we have made it clear that any patent

must be licensed for everyone’s free use or not licensed

at all.

Until recently the GPL was considered to provide

adequate protection against software patents by

ensuring that a software project could not be hijacked

by a patent owner and a wilful infringer of the

licence.84 This changed in recent years with the

increase in software patent applications and, more

importantly, with what FOSS developers perceived

as a decay in the quality of patents granted by

the USPTO. This reasoning suggests that the lack of

patent quality means that patents are increasingly

granted for processes and ideas that are obvious, do

not represent an obvious step, or do not have prior

art. As Bruce Perens says, ‘the vast majority of soft-

ware patents, some say as high as 95% of them, are

actually invalid due to the existence of prior art’.85

The result is a software environment polluted by

bad software patents that affect open source develop-

ers who do not have the resources to defend them-

selves against allegations of infringement and cannot

attempt to declare the patents invalid.86

From a European perspective, the arguments of

the FOSS community against software patents are

often informed by American practices. Many argue

that the problem in the United States is not specif-

ically with software patents but with the entire

American patent system, bad-quality software patents

being just part of the general lack of quality of patents

currently emanating from the USPTO.87 In particular

Jaffe and Lerner warn that ‘The real enemy of open-

source software—and software innovation more

generally—is the abysmal implementation of software

patents, not the concept’.88

Is the situation only desperate for American open

source developers, or is the same problem experi-

enced in Europe too. So far, the fears of open source

developers should be unjustified because Europe has

not granted so many software patents. Nevertheless,

there are enough examples of European patents that

protect elements found in software that are not inno-

vative and which in many instances have considerable

prior art against them.89 Another worrying example is

that of the European LIBDCA open source software

project, part of the VideoLAN project that produces

the open source media player called VLC.90 LIBDCA

is just one of the components of the media player

used for decoding a proprietary media format called

Digital Theater Systems (DTS).91 This format is pro-

tected by patent EP0864146 in Europe and US Patent

5,956,674.92 DTS Inc, the owners of the patents, have

sent a cease-and-desist letter to the LIBDCA project

alleging infringement of their patent.93 As a result

the source code for the encoder had to be removed.

Cases such as LIBDCA illustrate a major problem

concerning software patents that open source

83 Listed here (http://www.opensource.org/licenses/index.php).

84 J Lerner and J Tirole, The Scope of Open Source Licensing (2003) IDEI

Working Papers 219, pp 13–14.

85 B Perens, Software Patents v Free Software, http://perens.com/Articles/

Patents.html.

86 Bakels and Hugenholtz (n 72 above) 26–27. Also R Stallman, Software

Patents: Obstacles to Software Development (25 March 2002), http://

www.cl.cam.ac.uk/�mgk25/stallman-patents.html.

87 According to Greg Aharonian, by 2003 there were 200 000 software

patents, of which 120 000 are invalid (http://wiki.ffii.org/Greg040706En).

88 A Jaffe and J Lerner, Innovation and Its Discontents (2004), p 202.

89 Examples abound: a patent for the MP3 format (EP0287578); the infamous

Amazon One-click patent (EP0927945B1); one that covers fuzzy logic

operations (EP0488694); and one for object code applications

(EP0527213). For more patents, see http://swpat.ffii.org/patents/samples/

index.en.html.

90 For more details about the project, see http://www.videolan.org.

91 DTS, a proprietary multi-channel encoder that delivers high quality, low

latency and high bitrate DVD audio.

92 The patent claims to protect an audio encoding method, which pretty

much takes audio streams coming from one format and converts it into

another one.

93 The letter can be found here (http://www.ffii.org/%7Ezoobab/libdts/).

10 of 11 |
|

|
ARTICLE

Journal of Intellectual Property Law & Practice

http://www.opensource.org/licenses/index.php
http://perens.com/Articles/
http://
http://wiki.ffii.org/Greg040706En
http://swpat.ffii.org/patents/samples/
http://www.videolan.org
http://www.ffii.org/%7Ezoobab/libdts/

advocates predicted. A patent owner threatens a small

open source project, to which there is no other

recourse than to cease the development of the

software because the project cannot oppose the patent

. .

It is difficult to justify protection for a field of
endeavour in which significant innovation
comes from developers who have no interest in
obtaining patents
. .

even if it suspects it could be invalid. Patent litigation

is expensive and a small open source project, or SMEs

developing proprietary software, often cannot afford

to oppose patent claims against them. The grant

of software patents makes open source developers

believe that Europe has embarked on a slippery

slope that will lead eventually to American-style

patentability.

Despite the examples cited, most fears and con-

cerns of the open source community have not yet

come to pass. FOSS’s development has blossomed

despite the chaotic state of patentability of software

in the United States and there has been no patent

infringement litigation against any open source pro-

ject.94 However, the fact that the war has failed to

materialise does not mean that it is not coming.

Open source advocates are justified in being wary

about software patents, but such fears should be

proportional to the actual threat.

5. Conclusion
The demise of the CII Directive has left Europe in

turmoil because the debate has not been resolved,

only postponed. The EPO and national patent offices

continue to struggle with the nebulous legal concept

known as ‘technical contribution’. Meanwhile one

hopes that harmonized and rational practice will

soon arise. Cases such as CFPH are encouraging in

this respect.

Nevertheless, the law cannot ignore the wider pol-

icy issues at stake. The software patentability issue is

difficult to resolve, considering the astounding divers-

ity of opinions about the mere nature of computer

programs. This being so, it is difficult to attempt to

research the software industry in Europe and provide

a balanced and measured study of the facts. Such a

study is not feasible: research in this area will always

have to deal with preconceptions and biases. Despite

this, the main arguments offered by those who sup-

port wide patentability appear to lack the strength

and decisiveness to eliminate all criticisms made by

those against them. The situation is not as bad as

the most belligerent websites and weblogs suggest. It

is, however, clear that there are indeed some prob-

lems with software patents, particularly as a threat

to those who have chosen the non-proprietary devel-

opment route and are releasing their programs as

open source software.

The author believes that there is insufficient evi-

dence that software patents result in increased

innovation. On the contrary, fears about a system

paralysed by the fear of infringement are more likely

to hold sway with those familiar with software devel-

opment. It is difficult to justify protection for a field

of endeavour in which a significant amount of

innovation comes from developers who have no

interest in obtaining and seeking patents. One should

be wary of those who argue that the industry will col-

lapse without patents; just using any open source

software product will prove them wrong.

If we are still discussing the legal nature of soft-

ware, perhaps the most obvious way forward is to

resurrect the argument for creating a new type of pro-

tection. A sui generis software right could be the only

solution to marry the functional and literal elements

present in computer programs. But this discussion

is an entirely different subject.

doi:10.1093/jiplp/jpi046

94 H Meeker, ‘Open Source: The Sky Is Not Falling’, Linux Insider (4 July

2005), http://www.technewsworld.com/story/44367.html.

Andrés Guadamuz González · The software patent debate ARTICLE

|
|
|
|
|
|

11 of 11

http://www.technewsworld.com/story/44367.html

