4 per 1000 (2023). The international “4 per 1000” initiative – Soils for food security and climate. Agricultural Research Centre for International Development (CIRAD). Available at: https://4p1000.org/?lang=en [accessed June 2023].

Acebedo, B., M. C. Morant-Miñana, E. Gonzalo, I. Ruiz de Larramendi, A. Villaverde, J. Rikarte and

L. Fallarino (2023). Current status and future perspective on lithium metal anode production methods. Advanced Energy Materials, 13(13), 2203744.

Aflaki, A., N. Mahyuddin, Z. Al-Cheikh Mahmoud and M. R. Baharum (2015). A review on natural ventilation applications through building façade components and ventilation openings in tropical climates. Energy and Buildings, 101, 153–62.

AgFunder (2022a). 2022 AgFunder AgriFoodTech Investment Report. San Francisco, CA: AgFunder. Available at: https://agfunder.com/research/2022-agfunder-agrifoodtech-investment-report/.

AgFunder (2022b). AgFunder European investment report. San Fransisco, CA: AgFunder. Available at: https://research.agfunder.com/europe-2022-agrifoodtech-report-investnl.pdf.

Agora Energiewende (2023). Global steel transformation tracker. Available at: https://www. agora-energiewende.de/en/service/global-steel-transformation-tracker/ [accessed May 2023].

Ahmadi, N., J.-L. Dzido, M. Vales, J. Rakotoarisoa and A. Chabanne (2004). Upland rice for highlands: New varieties and sustainable cropping systems for food security promising prospects for the global challenges of rice production the world will face in the coming years? In I. T. A.

FAO (ed.), Rice in Global Markets and Sustainable Production Systems Conference, Rome, Italy, 12–13 February 2004. Rome: Food and Agriculture Organization of the United Nations (FAO), 14 p.

Airbus (2023). To insure grasslands against climate risks, Crédit Agricole Bank uses Airbus’ satellite imagery. Airbus Intelligence. Available at: https://www.intelligence-airbusds. com/newsroom/case-studies/agriculture/credit-agricole-uses-satellite-imagery-to-insure- grasslands/#solution [accessed October 2023].

Alao, M. A., O. M. Popoola and T. R. Ayodele (2022). Waste‐to‐energy nexus: An overview of technologies and implementation for sustainable development. Cleaner Energy Systems, 3, 100034.

Alauddin, M., M. A. Rashid Sarker, Z. Islam and C. Tisdell (2020). Adoption of alternate wetting and drying (AWD) irrigation as a water-saving technology in Bangladesh: Economic and environmental considerations. Land use policy, 91, 104430.

AlKheder, S. (2021). Promoting public transport as a strategy to reduce GHG emissions from private vehicles in Kuwait. Environmental Challenges, 3, 100075.

Almogbel, A., F. Alkasmoul, Z. Aldawsari, J. Alsulami and A. Alsuwailem (2020). Comparison of energy consumption between non-inverter and inverter-type air conditioner in Saudi Arabia. Energy Transitions, 4(2), 191–97.

Amoroso S., Aristodemou L., Criscuolo C., Dechezleprêtre A., Dernis H., Grassano N., Moussiegt L., Napolitano L., N. D., Squicciarini M. and T. A. (2021). World corporate top R&D investors: Paving the way for climate neutrality – A joint JRC and OECD report. Luxembourg: Publications Office of the European Union. Available at: https://www.oecd.org/sti/world-corporate-top-rd-investors- paving-the-way-for-climate-neutrality.pdf.

Anand, S. (2023). Rice acreage down 13% till Aug 5 due to rain shortfall. India Times. Available at: https://economictimes.indiatimes.com/news/economy/agriculture/rice-acreage-down-13-till- aug-5-due-to-rain-shortfall/articleshow/93439236.cms [accessed July 2023].

Anand, V., V. L. Kadiri and C. Putcha (2023). Passive buildings: A state-of-the-art review. Journal of Infrastructure Preservation and Resilience, 4(1), 3.

Andrijevic, M., C. F. Schleussner, M. J. Gidden, D. L. McCollum and J. Rogelj (2020). COVID-19 recovery funds dwarf clean energy investment needs. Science, 370(6514), 298–300.

Arens, M., M. Åhman and V. Vogl (2021). Which countries are prepared to green their coal- based steel industry with electricity? – Reviewing climate and energy policy as well as the implementation of renewable electricity. Renewable and Sustainable Energy Reviews, 143, 110938.

Arlbjørn, J. S., K. W. Jensen, K. Philipsen and A. Haug (2019). Drivers and barriers for Industry

4.0 readiness and practice: A SME perspective with empirical evidence’. In Hawaii International Conference on System Sciences. Grand Wailea, Maui, HI.

Arunrat, N., N. Pumijumnong, S. Sereenonchai, U. Chareonwong and C. Wang (2021). Comparison of GHG emissions and farmers’ profit of large-scale and individual farming in rice production across four regions of Thailand. Journal of Cleaner Production, 278, 123945.

Atmaca, A. and M. Kanoglu (2012). Reducing energy consumption of a raw mill in cement industry. Energy, 42(1), 261-69.

Aziminezhad, M. and R. Taherkhani (2023). BIM for deconstruction: A review and bibliometric analysis. Journal of Building Engineering, 73, 106683.

Baker, J. C. and K. E. Saxton (2007). The ‘what’ and ‘why’ of no-tillage farming. In Baker, C. J. and K. E. Saxton (eds.) No-tillage seeding in conservation agriculture, 2nd edn., Rome: Food and Agriculture Organization of the United Nations (FAO) and Commonwealth Agricultural Bureau (CAB) International, 1–10.

Barteková, E. and P. Börkey (2022). Digitalisation for the transition to a resource efficient and circular economy, OECD Environment Working Papers, No. 192. Paris: Organisation for Economic Co-operation and Development (OECD). Available at: https://www.oecd-ilibrary.org/content/ paper/6f6d18e7-en.

Bashi, Z., R. McCullough, L. Ong and M. Ramirez (2019). Alternative proteins: The race for market share is on. McKinsey & Company. Available at: https://www.mckinsey.com/industries/ agriculture/our-insights/alternative-proteins-the-race-for-market-share-is-on.

Bataille, C., S. Stiebert and F. G. N. Li (2021). Global facility level net-zero steel pathways. Paris: The Institute for Sustainable Development and International Relations (IDDRI). Available at: http:// netzerosteel.org/wp-content/uploads/pdf/net_zero_steel_report.pdf.

BCG (2022). The untapped climate opportunity in alternative proteins. Boston Consulting Group (BCG). Available at: https://www.bcg.com/publications/2022/ combating-climate-crisis-with-alternative-protein.

Berkeley (2023). Berkeley carbon trading project: Voluntary registry offsets database. Center for Environmental Public Policy (CEPP) and Goldman School of Public Policy, University of California, Berkeley. Available at: https://gspp.berkeley.edu/research-and-impact/centers/cepp/projects/berkeley-carbon-trading-project/offsets-database [accessed October 2023].

Bernhard, A. (2021). The great bicycle boom of 2020. BBC. Available at: https://www.bbc.com/ future/bespoke/made-on-earth/the-great-bicycle-boom-of-2020.html [accessed July 2023].

Bharadwaj, S., S. Ballare, Rohit and M. K. Chandel (2017). Impact of congestion on greenhouse gas emissions for road transport in Mumbai metropolitan region. Transportation Research Procedia, 25, 3538–51.

Bieser, J. C. T., R. Hintemann, L. M. Hilty and S. Beucker (2023). A review of assessments of the greenhouse gas footprint and abatement potential of information and communication technology. Environmental Impact Assessment Review, 99, 107033.

Black, S., A. Liu, I. Parry and N. Vernon (2023). IMF fossil fuel subsidies data: 2023 update, Working paper. Washington DC: International Monetary Fund (IMF). Available at: https://www.imf.org/ en/Publications/WP/Issues/2023/08/22/IMF-Fossil-Fuel-Subsidies-Data-2023-Update-537281 [accessed October 2023].

Blank, T. K. (2019). The disruptive potential of green steel, Insight brief. Rocky Mountain Institute (RMI). Available at: https://rmi.org/wp-content/uploads/2019/09/green-steel-insight-brief.pdf.

Boehm, A., P. Meissner and T. Plochberger (2015). An energy based comparison of vertical roller mills and tumbling mills. International Journal of Mineral Processing, 136, 37–41.

Bossio, D. A., S. C. Cook-Patton, P. W. Ellis, J. Fargione, J. Sanderman, P. Smith, S. Wood, R. J. Zomer, M. von Unger, I. M. Emmer and B. W. Griscom (2020). The role of soil carbon in natural climate solutions. Nature Sustainability, 3(5), 391–98.

Brand, C., E. Dons, E. Anaya-Boig, I. Avila-Palencia, A. Clark, A. de Nazelle, M. Gascon, M. Gaupp-Berghausen, R. Gerike, T. Götschi, F. Iacorossi, S. Kahlmeier, M. Laeremans, M. J.

Nieuwenhuijsen, J. Pablo Orjuela, F. Racioppi, E. Raser, D. Rojas-Rueda, A. Standaert, E. Stigell, S. Sulikova, S. Wegener and L. Int Panis (2021). The climate change mitigation effects of daily active travel in cities. Transportation Research Part D: Transport and Environment, 93, 102764.

Brock, J., Y. C. Budiman, J. Geddie and V. Volcovici (2021). Trash and burn: Big brands stoke cement kilns with plastic waste as recycling falters. Available at: https://www.reuters.com/ investigates/special-report/environment-plastic-cement/ [accessed October 2023].

Brogan, C. (2022). ‘Greening’ cement and steel: 9 ways these industries can reach net zero. London: Imperial College. Available at: www.imperial.ac.uk/news/235134/greening-cement- steel-ways-these-industries [accessed May 2023].

Brons Group (2023). Local use of precision farming equipment. [Interview], 16 August 2023. Available at: https://bronsgroup.com/.

Brozzi, R., D. Forti, E. Rauch and D. T. Matt (2020). The advantages of Industry 4.0 applications for sustainability: Results from a sample of manufacturing companies. Sustainability, 12(9), 3647.

Bruun, J. (2022). Breakthrough in separating plastic waste: Machines can distinguish 12 different types of plastic. Aarhus University. Available at: https://ingenioer.au.dk/en/current/news/view/ artikel/gennembrud-i-plastsortering-maskiner-kan-nu-se-forskel-paa-12-forskellige-typer-  plastik [accessed July 2023].

Buchanan, M. (2019). The benefits of public transport. Nature Physics, 15(9), 876–76. C40 (2018).

Consumption-based GHG emissions of C40 cities. C40 Cities. Available at: https://www.c40knowledgehub.org/s/article/ Consumption-based-GHG-emissions-of-C40-cities?language=en_US.

Cabernard, L., S. Pfister, C. Oberschelp and S. Hellweg (2022). Growing environmental footprint of plastics driven by coal combustion. Nature Sustainability, 5.

Calaiaro, J. (2022). AI-guided robots are ready to sort your recyclables. Institute of Electrical and 

Electronics Engineers (IEEE). Available at: https://spectrum.ieee.org/ai-guided-robots-are-ready- to-sort-your-recyclables [accessed July 2023].

Caner, D., J. Claes, D. De Clerq and M. Taksyak (2023). Needle in a haystack: Patents that inspire agricultural innovation. McKinsey & Company. Available at: https://www.mckinsey.com/ industries/agriculture/our-insights/needle-in-a-haystack-patents-that-inspire-agricultural- innovation [accessed October 2023].

Caprarulo, V., V. Ventura, A. Amatucci, G. Ferronato and G. Gilioli (2022). Innovations for reducing methane emissions in livestock toward a sustainable system: Analysis of feed additive patents in ruminants. Animals, 12(20), 2760.

Cargill (2023). How feed impacts your farm’s methane output. Cargill. Available at: http://dx.doi. org/ [accessed June 2023].

Casey, T. (2023). More bad news for fossil fuels: Rooftop solar meets agrivoltaics. Cleantechnica. Available at: https://cleantechnica.com/2023/04/07/more-bad-news-for-fossil-fuels-rooftop- solar-meets-agrivoltaics/ [accessed July 2023].

Castaldi, M. J. and N. J. Themelis (2010). The case for increasing the global capacity for waste to energy (WTE). Waste and Biomass Valorization, 1(1), 91–105.

CCAC (2023a). Enteric fermentation. Climate & Clean Air Coalition (CCAC) and United Nations Environment Programme (UNEP). Available at: https://www.ccacoalition.org/en/activity/enteric- fermentation [accessed May 2023].

CCAC (2023b). Promoting HFC alternative technology and standards. Climate & clean air coalition (CCAC). Available at: https://www.ccacoalition.org/fr/node/73 [accessed June 2023].

CCAC (2023c). Uruguay reduces livestock emissions while increasing productivity in a ccac- supported pilot project. Climate & Clean Air Coalition (CCAC) and United Nations Environment Programme (UNEP). Available at: https://www.ccacoalition.org/news/uruguay-reduces-livestock- emissions-while-increasing-productivity-ccac-supported-pilot-project [accessed October 2023].

CCFLA (2021). The state of cities climate finance. The Cities Climate Finance Leadership Alliance (CCFLA). Available at: https://www.climatepolicyinitiative.org/publication/ the-state-of-cities-climate-finance/.

Chan, M., M. A. N. Masrom and S. S. Yasin (2022). Selection of low-carbon building materials in construction projects: construction professionals perspectives. Buildings, 12(4), 486.

Chapelier, E., Hanaf, A. and Gourragne A., (2020). Patent mapping analysis in the field of agricultural robotics. Global Organization For Agricultural Robotics (GOFAR). Available at: https://www.agricultural-robotics.com/news/patent-mapping-analysis-in-the-field-of- agricultural-robotics [accessed October 2023].

Chaudhary, A. (2022). India planning carbon credit market for energy, steel and cement. The Economic Times. Available at: https://economictimes.indiatimes.com/industry/renewables/ india-planning-carbon-credit-market-for-energy-steel-and-cement/articleshow/93297031. cms?from=mdr [accessed May 2023].

Checherina, P. (2022). Using climate-smart rice to reduce methane emissions from agriculture. Climate & Clean Air Coalition (CCAC) and United Nations Environment Programme (UNEP).

Available at: https://www.ccacoalition.org/en/news/using-climate-smart-rice-reduce-methane- emissions-agriculture [accessed July 2023].

Chen, X., M. Despeisse and B. Johansson (2020). Environmental sustainability of digitalization in manufacturing: A review. Sustainability, 12(24).

Churkina, G. and A. Organschi (2022). Will a transition to timber construction cool the climate? Sustainability, 14(7), 4271.

Citywire (2023). Deere bets the farm on $150bn ‘precision agriculture’ opportunity. Citywire. Available at: https://citywire.com/pro-buyer/news/deere-bets-the-farm-on-150bn-precision- agriculture-opportunity/a2408316 [accessed August 2023].

Claver, H. (2023). Agricultural drones market to hit revenue of USD 14,237.6 million by 2033. Future Farming. Available at: https://www.futurefarming.com/tech-in-focus/drones/agricultural- drones-market-to-hit-revenue-of-us-14237-6-million-by-2033/ [accessed August 2023].

Climate ADAPT (2023). Precision Agriculture. The European Climate Adaptation Platform Climate-ADAPT. Available at: https://climate-adapt.eea.europa.eu/en/metadata/adaptation- options/precision-agriculture [accessed October 2023].

Climatewatch (2023). Climatewatch. Available at: https://www.climatewatchdata.org/ [accessed May 2023].

Cojocaru, A. and D. Isopescu (2021). Passive strategies of vernacular architecture for energy efficiency. Bulletin of the Polytechnic Institute of Iași. Construction. Architecture Section, 67, 33–44.

Colbach, N. and S. Cordeau (2022). Are no-till herbicide-free systems possible? A simulation study. Frontiers in Agronomy, 4.

Conejo, A. N., J.-P. Birat and A. Dutta (2020). A review of the current environmental challenges of the steel industry and its value chain. Journal of Environmental Management, 259, 109782.

Corichi, M. (2021). Eight-in-ten Indians limit meat in their diets, and four-in-ten consider themselves vegetarian. Pew Research Center. Available at: https://www.pewresearch.org/ short-reads/2021/07/08/eight-in-ten-indians-limit-meat-in-their-diets-and-four-in-ten-consider- themselves-vegetarian/ [accessed August 2023].

Cornell University (2017). System of rice intensification – SRI methodologies. Cornell University, College of Agriculture and Life Sciences. Available at: http://sri.ciifad.cornell.edu/aboutsri/ methods/index.html [accessed July 2017].

Cozzi, L., A. Petropulos, L. Paoli, M. Huismans and A. Dasgupta (2023). As their sales continue to rise, SUVs’ global CO2 emissions are nearing 1 billion tonnes. International Energy Agency (IEA). Available at: https://www.iea.org/commentaries/as-their-sales-continue-to-rise-suvs-global-co2- emissions-are-nearing-1-billion-tonnes [accessed September 2023].

CPI (2020). Examining the climate finance gap for small-scale agriculture. Climate Policy Initiative (CPI). Available at: https://www.ifad.org/documents/38714170/42157470/climate-finance- gap_smallscale_agr.pdf/34b2e25b-7572-b31d-6d0c-d5ea5ea8f96f.

CPI (2021). Global landscape of climate finance 2021. Climate Policy Initiative (CPI). Available at: https://www.climatepolicyinitiative.org/publication/ global-landscape-of-climate-finance-2021/.

CPI (2022a). Financing steel decarbonization, Instrument Analysis. Climate Policy Initiative (CPI). Available at: https://www.climatepolicyinitiative.org/wp-content/uploads/2022/10/FSD-report.pdf.

CPI (2022b). Global landscape of climate finance: A decade of data. Climate Policy Initiative (CPI). Available at: https://www.climatepolicyinitiative.org/publication/ global-landscape-of-climate-finance-a-decade-of-data/.

CPI (2022c). Landscape of climate finance for agriculture, forestry, other land use and fisheries: Preliminary findings. Climate Policy Initiative (CPI). Available at: https://www.climatepolicyinitiative.org/publication/

landscape-of-climate-finance-for-agriculture-forestry-other-land-uses-and-fisheries/.

CPI (2023). Landscape of climate finance for agrifood systems. Climate Policy Initiative (CPI). Available at: https://www.climatepolicyinitiative.org/wp-content/uploads/2023/07/Landscape- of-Climate-Finance-for-Agrifood-Systems.pdf.

Crownhart, C. (2023). Here’s what we know about lab-grown meat and climate change. MIT Technology Review Explains, Massachusetts Institute of Technology (MIT). Available at: https:// www.technologyreview.com/2023/07/03/1075809/lab-grown-meat-climate-change/ [accessed July 2023].

CTCN (2023). From solar farm to table, in Liberia improved solar powered irrigation practices are securing lowland rice production. UN Climate Technology Centre & Network (CTCN). Available at: https://www.ctc-n.org/news/solar-farm-table-liberia-improved-solar-powered-irrigation- practices-are-securing-lowland-rice [accessed October 2023].

Dabros, T. M. H., M. Z. Stummann, M. Høj, P. A. Jensen, J.-D. Grunwaldt, J. Gabrielsen, P. M. Mortensen and A. D. Jensen (2018). Transportation fuels from biomass via fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis. Progress in Energy and Combustion Science, 68, 268–309.

Danmarks Statistik (2022). Stigning i areal med præcisionslandbrug. Nyt fra Danmarks Statistik. Available at: https://www.dst.dk/da/Statistik/nyheder-analyser-publ/nyt/NytHtml?cid=42525 [accessed August 2023].

Danone (2020). Danone North America and the National Fish and Wildlife Foundation join forces. Danone North America. Available at: https://www.danonenorthamerica.com/news/ danone-north-america-and-the-national-fish-and-wildlife-foundation-join-forces-to-leverage-  3-million-in-federal-funding-for-shared-commitment-to-regenerative-agriculture/ [accessed October 2023].

Daziano, R. A. (2022). Willingness to delay charging of electric vehicles. Research in Transportation Economics, 94, 101177.

De Munck, C., G. Pigeon, V. Masson, C. Marchadier, F. Meunier, P. Bousquet, B. Tremeac,

M. Merchat, P. Poeuf and A. Lemonsu (2013). How much air conditioning can increase air temperatures for a city like Paris (France)? International Journal of Climatology, 33, 210–27.

de Sousa Jabbour, A. B. L., C. J. C. Jabbour, C. Foropon and M. Godinho Filho (2018). When titans meet – Can industry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors. Technological Forecasting and Social Change, 132, 18–25.

DJI Agriculture (2023). Saving up to 95% water, improving efficiency, while saving chemicals: DJI Agras drones benefit farmers in Turkey during drought. DJI Global. Available at: https://ag.dji. com/case-studies/ag-case-en-t30-tr-drought [accessed October 2023].

DNV (2023). Green steel assurance. Det Norske Veritas (DNV). Available at: https://www.dnv. com/services/green-steel-assurance-232895 [accessed May 2023].

Dong, Y., M. Coleman and S. Miller (2021). Greenhouse gas emissions from air conditioning and refrigeration service expansion in developing countries. Annual review of environment and resources, 46.

dos Muchangos, L. S. and A. Tokai (2020). Greenhouse gas emission analysis of upgrading from an open dump to a semi-aerobic landfill in Mozambique – The case of Hulene dumpsite. Scientific African, 10, e00638.

Dosumu, O. and C. Aigbavboa (2019). An investigation of the barriers to the uptake of local materials in Africa: A literature review approach. African Journal of Science, Technology, Innovation and Development.

Dusík, J., T. Fischer, B. Sadler, R. Therivel and I. Saric (2018). Strategic environmental and social assessment of automation: Scoping working paper. Available at: https://www.researchgate.net/ publication/326461326_Strategic_Environmental_and_Social_Assessment_of_Automation_ Scoping_Working_Paper.

ECN (2015). Webinar: Introduction to technologies for energy efficiency in the industry sector. [Webinar online], available at: https://www.ctc-n.org/calendar/webinars/introduction- technologies-energy-efficiency-industry-sector [accessed October 2023].

ECOS (2023). A performance-based standard for common cements, ECOS Brief. Environmental Coalition on Standards (ECOS). Available at: https://ecostandard.org/publications/ecos-brief-a-performance-based-standard-for-common-cements/

EDF (2023). ‘Precision Agriculture Loan Act’ unlocks new financing for climate solutions. Environmental Defense Fund (EDF). Available at: https://www.edf.org/media/precision- agriculture-loan-act-unlocks-new-financing-climate-solutions [accessed October 2023].

EEA (2018). Electric vehicles from life cycle and circular economy perspectives. European Environment Agency (EEA). Available at: https://www.eea.europa.eu/publications/ electric-vehicles-from-life-cycle.

EEA (2022). Briefing: Soil carbon. European Environment Agency (EEA). Available at: https://www. eea.europa.eu/publications/soil-carbon [accessed June 2023].

EEA (2023a). Decarbonising heating and cooling A climate imperative. Copenhagen, Denmark: European Environment Agency (EEA). Available at: https://www.eea.europa.eu/publications/ decarbonisation-heating-and-cooling.

EEA (2023b). Transport and environment report 2022. European Environment Agency (EEA). Available at: https://www.eea.europa.eu//publications/transport-and-environment-report-2022.

EIT Urban Mobility (2022). Urban mobility next 8: Expectations and success factors for urban air mobility in Europe. Barcelona, Spain: EIT Urban Mobility. Available at: https://www. eiturbanmobility.eu/wp-content/uploads/2022/11/EIT-UrbanAirMobility.pdf.

Ellis, J. (2023). Reversing agriculture’s emissions with carbon-fixing soil inputs. Cleantech Group. Available at: https://www.cleantech.com/reversing-agricultures-emissions-with-carbon-fixing- soil-inputs/ [accessed July 2022].

Ellis, J. E., M. B. Coughenour and D. M. Swift (1993). Climate variability, ecosystem stability, and the implications for range and livestock development. In Behnke, R. H., I. Scoones and C. Kerven (eds) Range ecology at disequilibrium. London: Overseas Development Institute, 31–41.

EMF (2020). Financing the circular economy: Capturing the opportunity. Ellen MacArthur Foundation (EMF). Available at: https://ellenmacarthurfoundation.org/ financing-the-circular-economy-capturing-the-opportunity.

Engler, J.-O. and H. von Wehrden (2018). Global assessment of the non-equilibrium theory of rangelands: Revisited and refined. Land use policy, 70, 479–84.

EPO (2021). Patents for tomorrow’s plastics: Global innovation trends in recycling, circular design and alternative sources. Munich, Germany: European Patent Office (EPO). Available at: https:// www.ovtt.org/wp-content/uploads/2021/10/patents_for_tomorrows_plastics_study_en.pdf.

EPO (2022a). Insights into urban mobility. European Patent Office (EPO). Available at: https:// www.epo.org/about-us/annual-reports-statistics/statistics/2021/insight-into-smart-urban- mobility.html [accessed August 2023].

EPO (2022b). Space-borne sensing and green applications, Patent insight report. Munich, Germany: European Patent Office. Available at: https://link.epo.org/web/Space-borne%20 sensing%20and%20green%20applications%20report.pdf.

EPO and IEA (2020). Innovation in batteries and electricity storage. International Energy Agency (IEA) and European Patent Office (EPO). Available at: https://www.iea.org/reports/ innovation-in-batteries-and-electricity-storage.

EPO and IEA (2021). Patents and the energy transition. European Patent Office (EPO). Available at: https://iea.blob.core.windows.net/assets/b327e6b8-9e5e-451d-b6f4-cbba6b1d90d8/Patents_and_the_energy_transition.pdf.

EPO and UNEP (2015). Climate change mitigation technologies in Europe evidence from patent and economic data. Nairobi: United Nations Environment Programme (UNEP). European Patent Office (EPO). Available at: https://www.epo.org/news-events/in-focus/sustainable-technologies/clean- energy/europe.html.

ESA (2023). A closer look at the latest earth observation services industry trends. The European Space Agency (ESA). Available at: https://space-economy.esa.int/article/72/a-closer-look-at-the- latest-earth-observation-services-industry-trends [accessed October 2023].

ESCI (2022). Energy costs reduced by 40% in aluminium, steelworks and ceramics production. [online], Available at: https://www.youtube.com/watch?v=VQwTogBhYz8 [accessed].

Escobar, N., S. Haddad, J. Börner and W. Britz (2018). Land use mediated GHG emissions and spillovers from increased consumption of bioplastics. Environmental Research Letters, 13, 125005.

EU (2021). Digital transformation in European steel industry: State of art and future scenario. European Union (EU). Available at: https://www.estep.eu/assets/Uploads/ESSA-D2.1- Technological-and-Economic-Development-in-the-Steel-Industry-Version-2.pdf.

European Commission (2017). Development of new methodologies for industrial CO2-free steel production by electrowinning. Available at: https://cordis.europa.eu/project/id/768788 [accessed May 2023].

European Commission (2021). Evaluation of the impact of the Common Agricultural Policy on climate change and greenhouse gas emissions. Commission staff working document, Directorate- General for Agriculture and Rural Development. Brussels: Publications Office of the European Union. Available at: http://op.europa.eu/en/publication-detail/-/publication/7307349a-ba1a- 11eb-8aca-01aa75ed71a1 [accessed October 2023].

European Parliament (2021). Carbon-free steel production: Cost reduction options and usage of existing gas infrastructure. European Parliamentary Research Service (EPRS). Available at: https:// www.europarl.europa.eu/RegData/etudes/STUD/2021/690008/EPRS_STU(2021)690008_EN.pdf.

European Patent Office (2020). Fourth industrial revolution. Available at: https://www.epo.org/ news-events/in-focus/ict/fourth-industrial-revolution.html [accessed May 2023].

Fairhead, J. and M. Leach (1996a). Colonial science & its relics in West Africa. In Leach, M. and R. Mearns (eds) The lie of the land, challenging received wisdom on the African Environment. Oxford, UK: The International African Institute with James Currey, 105-21.

Fairhead, J. and M. Leach (1996b). Misreading the African landscape: Society and ecology in a forest- savanna mosaic, African Studies. Cambridge, UK: Cambridge University Press.

Fan, Z. and J. Friedmann (2021). Low-carbon production of iron & steel: Technology options, economic assessment, and policy. Center on Global Energy Policy at Columbia University. Available at: https://www.energypolicy.columbia.edu/publications/

low-carbon-production-iron-steel-technology-options-economic-assessment-and-policy.

FAO (2016). Reducing enteric methane for improving food security and livelihoods. New Zealand: Food and Agriculture Organization of the United Nations (FAO). Available at: https://www.ccacoalition.org/en/resources/ reducing-enteric-methane-improving-food-security-and-livelihoods.

FAO (2017). Livestock solutions for climate change. Rome: Food and Agriculture Organization of the United Nations (FAO). Available at: https://www.fao.org/3/i8098e/i8098e.pdf.

FAO (2019). Five practical actions towards low-carbon livestock. Rome: Food and Agriculture Organization of the United Nations (FAO). Available at: https://www.fao.org/3/ca7089en/ ca7089en.pdf.

FAO (2021). A step-by-step approach toward a gradual adoption of the full conservation agriculture technology: An example from Timor-Leste. TECA – Technologies and Practices for Small Agricultural Producers, Food and Agriculture Organization of the United Nations (FAO). Available at: www.fao. org/in-action/kore/good-practices/good-practices-details/en/c/1413322 [accessed July 2023].

FAO (2022). World food and agriculture: Statistical yearbook 2022. Rome: Food and Agriculture Organization of the United Nations (FAO). Available at: https://www.fao.org/documents/card/ en/c/cc2211en.

FAO (2023a). Global Livestock Environmental Assessment Model (GLEAM). Food and Agriculture Organization of the United Nations (FAO). Available at: https://www.fao.org/gleam/en/ [accessed May 2023].

FAO (2023b). Land use in agriculture by the numbers. Food and Agriculture Organization of the United Nations (FAO). Available at: http://www.fao.org/sustainability/news/detail/en/c/1274219/ [accessed May 2023].

FAOSTAT (2023). Food and agriculture data. Food and Agriculture Organization of the United Nations (FAO). Available at: https://www.fao.org/faostat/en/#home [accessed July 2023].

Fatahi, R., H. Nasiri, E. Dadfar and S. Chehreh Chelgani (2022). Modeling of energy consumption factors for an industrial cement vertical roller mill by SHAP-XGBoost: a “conscious lab” approach. Scientific Reports, 12(1), 7543.

Fatimi, A. (2021). The use of seaweeds in the formulation of feeds for livestock: Patent analysis. In 2nd International Electronic Conference on Animals Global Sustainability and Animals: Welfare, Policies and Technology. Basel, Switzerland: MDPI.

Fennell, P., J. Driver, C. Bataille and S. J. Davis (2022). Cement and steel – Nine steps to net zero. Nature, 603, 574–577. Available at: https://www.nature.com/articles/d41586-022-00758-4 [accessed May 2023].

Frączek, B. and A. Urbanek (2021). Financial inclusion as an important factor influencing digital payments in passenger transport: A case study of EU countries. Research in Transportation Business & Management, 41, 100691.

Freitag, C., M. Berners-Lee, K. Widdicks, B. Knowles, G. S. Blair and A. Friday (2021). The real climate and transformative impact of ICT: A critique of estimates, trends, and regulations. Patterns, 2(9), 100340.

Fritzsche, K., S. Niehoff and G. Beier (2018). Industry 4.0 and climate change – exploring the science–policy gap. Sustainability, 10(12). Available at: https://www.mdpi.com/2071- 1050/10/12/4511 [accessed September 2023].

Furfari, S. (2016). Energy efficiency of engines and appliances for transport on land, water, and in air. Ambio, 45(1), 63–68.

Gan, Y. and W. M. Griffin (2018). Analysis of life-cycle GHG emissions for iron ore mining and processing in China – Uncertainty and trends. Resources Policy, 58, 90–96.

Gardner, T. (2023). US announces $6 bln in grants to decarbonize heavy industry. Reuters. Available at: https://www.reuters.com/business/environment/us-announces-6-bln-grants- decarbonize-heavy-industry-2023-03-08/ [accessed May 2023].

GCCA (2021). The GCCA 2050 cement and concrete industry roadmap for net zero concrete. Global Cement and Concrete Association (GCCA). Available at: https://gccassociation.org/concretefuture/wp-content/uploads/2021/10/GCCA-Concrete-Future-Roadmap-Document-AW.pdf.

Geist, H. J. and E. F. Lambin (2002). Proximate causes and underlying driving forces of tropical deforestation: Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. Bioscience, 52(2), 143–50.

GeSI (2015). ICT solutions for 21st century challenges. Global e-Sustainability Initiative (GeSI). Available at: https://smarter2030.gesi.org/ [accessed August 2023].

GeSI (2020). Digital solutions for climate action. Brussels, Belgium: Global e-Sustainability Initiative (GeSI). Available at: https://gesi.org/research/download/52.

GHG Protocol (2023). Greenhouse Gas Protocol FAQ. Available at: https://ghgprotocol.org/sites/ default/files/standards_supporting/FAQ.pdf [accessed June 2023].

Ghoneim, R., G. Mete and A. Hobley (2022). Steel and cement can drive the decade of action on climate change: This is how. United Nations Industrial Development Organization (UNIDO),

‘Industrial Analytics Platform’. Available at: https://iap.unido.org/articles/steel-and-cement-can- drive-decade-action-climate-change-how [accessed May 2023].

GIZ (2021). Potential of Article 6 and other financing instruments to promote Green Hydrogen in the Steel, Cement and Mining Industries. Bonn, Germany: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. Available at: https://www.carbon-mechanisms.de/fileadmin/ media/dokumente/Publikationen/Bericht/Art.-6-Green-Hydrogen-Final-ENG.pdf.

Global CCS Institute (2022). 2022 Status report: Appendices. Available at: https://status22. globalccsinstitute.com/2022-status-report/appendices/ [accessed May 2023].

Global Infrastructure Hub (2020). Pre-fabrication technology for modular construction. Global Infrastructure Hub. Available at: https://www.gihub.org/infrastructure-technology-use-cases/ case-studies/pre-fabrication-technology-for-modular-construction/ [accessed July 2023].

Gomaa, M., W. Jabi, V. Soebarto and Y. M. Xie (2022). Digital manufacturing for earth construction: A critical review. Journal of Cleaner Production, 338, 130630.

Gomaa, M., S. Schade, D. W. Bao and Y. M. Xie (2023). Automation in rammed earth construction for industry 4.0: Precedent work, current progress and future prospect. Journal of Cleaner Production, 398, 136569.

Griffiths, S., B. K. Sovacool, D. D. Furszyfer Del Rio, A. M. Foley, M. D. Bazilian, J. Kim and J. M. Uratani (2023). Decarbonizing the cement and concrete industry: A systematic review of socio- technical systems, technological innovations, and policy options. Renewable and Sustainable Energy Reviews, 180, 113291.

Guevara Opinska, L., M. Mahmoud, C. Bene and K. Rademaekers (2021). Moving towards zero- emission steel: Technologies available, prospects, timeline and costs. Luxembourg: European Parliament. Available at: https://www.europarl.europa.eu/RegData/etudes/STUD/2021/695484/ IPOL_STU(2021)695484_EN.pdf.

Gulda, M. P. (2021). How digitalization will enable completely different ways of working in steelmaking. H2 Green Steel. Available at: https://www.h2greensteel.com/stories/ how-digitalization-will-enable-completely-different-ways-of-working-in-steelmaking.

Haghdadi, N., M. Laleh, M. Moyle and S. Primig (2021). Additive manufacturing of steels: A review of achievements and challenges. Journal of Materials Science, 56(1), 64–107.

Hanifa, M., R. Agarwal, U. Sharma, P. C. Thapliyal and L. P. Singh (2023). A review on CO2 capture and sequestration in the construction industry: Emerging approaches and commercialised technologies. Journal of CO2 Utilization, 67, 102292.

Hanley, S. (2022). Agrivoltaics – Solar panels & tomatoes may be perfect for each other. Cleantechnica. Available at: https://cleantechnica.com/2022/12/01/agrivoltaics-solar-panels- tomatoes-may-be-perfect-for-each-other/ [accessed July 2023].

Hann, S. (2022). Is net zero enough for the material production sector? Bristol: Eunomia Research & Consulting Ltd. Available at: https://zerowasteeurope.eu/wp-content/uploads/2022/11/Is-Net- Zero-Enough-for-the-Materials-Sector-Report-1.pdf.

Hardin, G. (1968). The tragedy of the commons. Science, 162(3859), 1243–48.

Havlík, P., H. Valin, M. Herrero, M. Obersteiner, E. Schmid, M. C. Rufino, A. Mosnier, P. K. Thornton, H. Böttcher, R. T. Conant, S. Frank, S. Fritz, S. Fuss, F. Kraxner and A. Notenbaert (2014). Climate change mitigation through livestock system transitions. Proceedings of the National Academy of Sciences, 111(10), 3709–14.

Hawkins, H.-J., R. I. M. Cargill, M. E. Van Nuland, S. C. Hagen, K. J. Field, M. Sheldrake, N. A. Soudzilovskaia and E. T. Kiers (2023). Mycorrhizal mycelium as a global carbon pool. Current Biology, 33(11), R560–R73.

Helldén, U. (1991). Desertification – Time for an assessment. Ambio, 20(8), 372–83.

Hicks Pries, C. E., C. Castanha, R. C. Porras and M. S. Torn (2017). The whole-soil carbon flux in response to warming. Science, 355(6332), 1420–23.

Hites, B. (2020). The growth of EAF steelmaking. Recycling Today. Available at: https://www. recyclingtoday.com/article/the-growth-of-eaf-steelmaking/ [accessed May 2023].

Hogg, D. (2006). A changing climate for energy from waste? Final report for Friends of the Earth. Eunomia Research & Consulting. Available at: https://www.friendsoftheearth.ie/assets/files/pdf/ report_on_incineration_and_climate.pdf.

Hogg, D. (2023). Debunking efficient recovery: The performance of EU incineration facilities. Equanimator Ltd for Zero Waste Europe. Available at: https://zerowasteeurope.eu/library/ debunking-efficient-recovery/.

ICCT (2020). Beyond biomass? Alternative fuels from renewable electricity and carbon recycling. The International Council on Clean Transportation (ICCT). Available at: https://theicct.org/publication/beyond-biomass-alternative-fuels-from-renewable-electricity-and-carbon-recycling/

IEA (2018a). The future of cooling: Opportunities for energy-efficient air conditioning. International Energy Agency (IEA). Available at: https://iea.blob.core.windows.net/assets/0bb45525-277f- 4c9c-8d0c-9c0cb5e7d525/The_Future_of_Cooling.pdf.

IEA (2018b). Technology roadmap, Low-carbon transition in the cement industry. Paris: International Energy Agency (IEA). Available at: https://iea.blob.core.windows.net/assets/cbaa3da1-fd61-4c2a- 8719-31538f59b54f/TechnologyRoadmapLowCarbonTransitionintheCementIndustry.pdf.

IEA (2019a). Energy Efficiency 2019. Paris: International Energy Agency (IEA). Available at: https:// www.iea.org/reports/energy-efficiency-2019.

IEA (2019b). Global patent applications for climate change mitigation technologies – a key measure of innovation – are trending down. Paris: International Energy Agency (IEA). Available at: https:// www.iea.org/commentaries/global-patent-applications-for-climate-change-mitigation- technologies-a-key-measure-of-innovation-are-trending-down.

IEA (2019c). Material efficiency in clean energy transitions. Paris: International Energy Agency. Available at: https://www.iea.org/reports/material-efficiency-in-clean-energy-transitions.

IEA (2020). Iron and steel technology roadmap. Energy Technology Perspectives. Paris: International Energy Agency (IEA). Available at: https://iea.blob.core.windows.net/assets/ eb0c8ec1-3665-4959-97d0-187ceca189a8/Iron_and_Steel_Technology_Roadmap.pdf.

IEA (2021). Net Zero by 2050. A roadmap for the global energy sector. Paris: International Energy Agency (EIA). Available at: https://www.iea.org/reports/net-zero-by-2050.

IEA (2022a). Cement, Tracking report. Paris: International Energy Agency (IEA). Available at: https://www.iea.org/reports/cement.

IEA (2022b). Direct air capture. Paris: International Energy Agency (IEA). Available at: https:// www.iea.org/reports/direct-air-capture.

IEA (2022c). Heating. International Energy Agency (IEA). Available at: https://www.iea.org/ reports/heating.

IEA (2022d). Renewable heat. International Energy Agency (IEA). Available at: https://www.iea. org/reports/renewables-2022/renewable-heat [accessed November 2023].

IEA (2023a). Biofuels. International Energy Agency (IEA). Available at: https://www.iea.org/ energy-system/low-emission-fuels/biofuels [accessed July 2023].

IEA (2023b). CCUS project explorer. Available at: https://www.iea.org/data-and-statistics/ data-tools/ccus-projects-explorer.

IEA (2023c). Fossil fuel consumption subsidies 2022, Policy report. International Energy Agency (IEA). Available at: https://www.iea.org/reports/fossil-fuels-consumption-subsidies-2022.

IEA (2023d). Global EV outlook 2023. International Energy Agency (IEA). Available at: https://www. iea.org/reports/global-ev-outlook-2023.

IEA (2023e). Heat pumps. International Energy Agency (IEA). Available at: https://www.iea.org/ fuels-and-technologies/heat-pumps [accessed June 2023].

IEA (2023f). Hydrogen, Tracking clean energy progress 2023. International Energy Agency (IEA). Available at: https://www.iea.org/energy-system/low-emission-fuels/hydrogen#tracking [accessed August 2023].

IEA (2023g). Transport. International Energy Agency (IEA). Available at: https://www.iea.org/ energy-system/transport.

IEA (2023h). World energy investment 2023, Flagship report. Paris: International Energy Agency (IEA). Available at: https://www.iea.org/reports/world-energy-investment-2023.

IEA Bioenergy (2023). Commercial status of direct thermochemical liquefaction technologies. International Energy Agency (IEA). Available at: https://www.ieabioenergy.com/blog/ publications/commercial-status-of-direct-thermochemical-liquefaction-technologies/.

IFAD (2023). New IFAD initiative will help reduce global warming by lowering methane emissions from small-scale farming. International Fund for Agricultural Development (IFAD). Available at: https://www.ifad.org/en/web/latest/-/new-ifad-initiative-will-help-reduce-global-warming- by-lowering-methane-emissions-from-small-scale-farming.

IISD (2022). Lighting the path: What IPCC energy pathways tell us about Paris-aligned policies and investments. Canada: International Institute for Sustainable Development (IISD). Available at: https://www.iisd.org/system/files/2022-06/ipcc-pathways-paris-aligned-policies.pdf.

International Resource Panel (2019). Global Resources Outlook 2019: Natural resources for the future we want. Nairobi, Kenya: United Nations Environment Programme International Resource Panel. Available at: https://wedocs.unep.org/handle/20.500.11822/27518.

International Resource Panel (2020). Resource efficiency and climate change: Material efficiency strategies for a low-carbon future. Nairobi, Kenya: United Nations Environment Programme International Resource Panel. Available at: https://www.resourcepanel.org/reports/resource-efficiency-and-climate-change

IP Australia (2018). The blockchain innovation: A patent analytics report. Available at: https://www.ipaustralia.gov.au/tools-and-research/professional-resources/ data-research-and-reports/publications-and-reports/2022/09/30/02/59/the-blockchain-innovation-a-patent-analytics-report

IP Australia (2019). Machine learning innovation: A patent analytics report. Available at: https://www.ipaustralia.gov.au/tools-and-research/professional-resources/ data-research-and-reports/publications-and-reports/2022/09/30/03/31/   machine-learning-innovation-a-patent-analytics-report.

IP Australia (2021). The power of hydrogen: Patent analytics on hydrogen technologies. Available at: https://www.ipaustralia.gov.au/tools-and-research/professional- resources/data-research-and-reports/publications-and-reports/2022/09/30/ hydrogen-technology-patent-analytics.

IP Australia (2022a). Carbon capture and storage. Available at: https://app.powerbi.com/view?r= eyJrIjoiYjE1MDI2Y2ItY2Q0NC00NjUwLWE1NmYtODA4Njg0MTkzMjA4IiwidCI6IjljMGNlZDQ5LTRl MzYtNGY4MS1iOGQ3LTEwYzRhMGNiZmYyZCJ9 [accessed May 2023].

IP Australia (2022b). Low emission steel, aluminium and iron ore. Available at: https://app. powerbi.com/view?r=eyJrIjoiNGMyYjE0NjItYzcxNy00NzViLWExYjEtZGE0YjZkYzIxOGUxIiwidCI6Ijlj MGNlZDQ5LTRlMzYtNGY4MS1iOGQ3LTEwYzRhMGNiZmYyZCJ9 [accessed May 2023].

IP Australia (2023). Patent analytics on low emission technologies. Intellectual Property Office of Australia. Available at: https://www.ipaustralia.gov.au/tools-and-research/professional- resources/data-research-and-reports/publications-and-reports/2022/11/30/03/16/patent- analytics-on-low-emission-technologies [accessed October 2022].

IPCC (2021a). Working Group I sixth assessment report: The physical science basis – Full report. Geneva: Intergovernmental Panel on Climate Change (IPCC). Available at: https://www.ipcc.ch/ report/sixth-assessment-report-working-group-i/.

IPCC (2021b). Working Group I Sixth Assessment Report: The Physical Science Basis Summary for policymakers. Geneva: Intergovernmental Panel on Climate Change (IPCC). Available at: https:// www.ipcc.ch/report/ar6/wg1/#SPM.

IPCC (2022a). Climate change 2022: Mitigation of climate change – Full report, Working Group III contribution to IPCC sixth assessment report. Cambridge, UK: Intergovernmental Panel on Climate Change (IPCC). Available at: https://www.ipcc.ch/report/sixth-assessment-report-working-group-3/

IPCC (2022b). Climate change 2022: Mitigation of climate change Technical summary, Working Group III contribution to IPCC sixth assessment report. Cambridge, UK:

Intergovernmental Panel on Climate Change (IPCC). Available at: https://www.ipcc.ch/report/ sixth-assessment-report-working-group-3/.

IPCC (2022c). Climate change 2022: Mitigation of climate change – Summary for policymakers, Working Group III contribution to IPCC sixth assessment report. Cambridge, UK: Intergovernmental Panel on Climate Change (IPCC). Available at: https://www.ipcc.ch/report/ sixth-assessment-report-working-group-3/.

IPCC (2023). Synthesis report (SYR) of the IPCC sixth assessment report (AR6): Summary for policymakers. Geneva: Intergovernmental Panel on Climate Change (IPCC). Available at: https:// www.ipcc.ch/report/ar6/syr/.

Ipsos (2019). China’s agriculture drone revolution. Hong Kong: Ipsos Business Consulting. Available at: https://www.ipsos.com/sites/default/files/ct/publication/documents/2020-10/ china-agriculture-drones.pdf.

IRP (2020). Resource efficiency and climate change: Material efficiency strategies for a low-carbon future. Nairobi: International Resource Panel (IRP) and United Nations

Environment Programme (UNEP). Available at: https://www.unep.org/resources/report/ resource-efficiency-and-climate-change-material-efficiency-strategies-low-carbon.

IRRI (2019a). Alternate wetting and drying. International Rice Research Institute (IRRI). Available at: https://ghgmitigation.irri.org/mitigation-technologies/alternate-wetting-and-drying [accessed July 2023].

IRRI (2019b). Dry seeded rice. International Rice Research Institute (IRRI). Available at: https:// ghgmitigation.irri.org/mitigation-technologies/dry-seeded-rice [accessed July 2023].

IRRI (2019c). Laser land levelling. International Rice Research Institute (IRRI). Available at: https://ghgmitigation.irri.org/mitigation-technologies/laser-land-leveling [accessed July 2023].

IRRI (2019d). Machine transplanting. International Rice Research Institute (IRRI). Available at: https://ghgmitigation.irri.org/mitigation-technologies/machine-transplanting [accessed July 2023].

IRRI (2021). How to manage water. Rice knowledge bank, International Rice Research Institute (IRRI). Available at: http://www.knowledgebank.irri.org/step-by-step-production/growth/water- management [accessed July 2023].

IRRI (2023). Manual transplanting. International Rice Research Institute (IRRI). Available at: http://www.knowledgebank.irri.org/training/fact-sheets/crop-establishment/manual-transplanting#:~:text=Why%20transplant%20rice%3F,and%20has%20variable%20water%20levels. [accessed July 2023].

ITF (2023). ITF transport outlook 2023. International Transport Forum (ITF). Available at: https:// www.oecd-ilibrary.org/transport/itf-transport-outlook-2023_b6cc9ad5-en.

ITU (2021). Indian firm’s digital solution for urban waste pickers. International Transport Forum (ITF). Available at: https://www.itu.int/hub/2021/07/indian-firms-digital-solution-for-urban- waste-pickers/ [accessed July 2023].

ITU (2022a). Measuring digital development. International Telecommunication Union (ITU). Available at: https://www.itu.int/itu-d/reports/statistics/facts-figures-2022/.

ITU (2022b). Tech transfer and digital public goods needed for climate action. The International Telecommunication Union (ITU). Available at: https://www.itu.int/hub/2022/03/tech-transfer- digital-public-goods-climate-action-africa/ [accessed August 2023].

Ivanova, D., J. Barrett, D. Wiedenhofer, B. Macura, M. Callaghan and F. Creutzig (2020). Quantifying the potential for climate change mitigation of consumption options. Environmental Research Letters, 15(9).

Ivanovich, C. C., T. Sun, D. R. Gordon and I. B. Ocko (2023). Future warming from global food consumption. Nature Climate Change, 13(3), 297–302.

Jasonarson, I. (2020). Digitalization for energy efficiency in energy intensive industries. Unpublished thesis (Independent thesis advanced level), KTH.

JRC (2013). Best Available Techniques (BAT) reference document for the production of cement, lime and magnesium oxide. Geneva: Joint Research Centre (JRC). Available at: https://op.europa.eu/en/ publication-detail/-/publication/12dbe9f3-28c6-44c9-8962-50a1359443d6.

JRC (2020). Deep decarbonization of industry: The cement sector. Brussels: European Commission Joint Research Centre (JRC). Available at: https://ee-ip.org/fileadmin/user_upload/IMAGES/ Articles/JRC120570_decarbonisation_of_cement fact_sheet.pdf.

Kahawalage, A. C., M. C. Melaaen and L.-A. Tokheim (2023). Opportunities and challenges of using SRF as an alternative fuel in the cement industry. Cleaner Waste Systems, 4, 100072.

Kang, M., S. Cho, J. Kim, S. Sohn, Y. Ryu and N. Kang (2023). On securing continuity of eddy covariance flux time-series after changing the measurement height: Correction for flux differences due to the footprint difference. Agricultural and Forest Meteorology, 331, 109339.

Kashyap, Y. (2022). Analysis: Costs and impacts of low-carbon technologies for steel and cement sectors in India. Climate Policy Initiative (CPI). Available at: https://www.climatepolicyinitiative. org/report-summary-costs-and-impacts-of-low-carbon-technologies-for-steel-and-cement- sectors-in-india/ [accessed May 2023].

Kaza, S., L. C. Yao, P. Bhada-Tata and F. Van Woerden (2018). What a waste 2.0: A global snapshot of solid waste management to 2050. Washington, DC: World Bank. Available at: https:// openknowledge.worldbank.org/entities/publication/d3f9d45e-115f-559b-b14f-28552410e90a.

Kim, J., B. K. Sovacool, M. Bazilian, S. Griffiths, J. Lee, M. Yang and J. Lee (2022). Decarbonizing the iron and steel industry: A systematic review of sociotechnical systems, technological innovations, and policy options. Energy Research & Social Science, 89, 102565.

Kinigadner, J., B. Büttner, G. Wulfhorst and D. Vale (2020). Planning for low carbon mobility: Impacts of transport interventions and location on carbon-based accessibility. Journal of Transport Geography, 87, 102797.

Kreier, F. (2022). Drones bearing parcels deliver big carbon savings. Nature.

Kumar, P., J. Bhamu and K. S. Sangwan (2021). Analysis of barriers to Industry 4.0 adoption in manufacturing organizations: an ISM approach. Procedia CIRP, 98, 85–90.

Kurnik, J. and K. Devine (2022). Innovation in reducing methane emissions from the food sector: Side of rice, hold the methane. World Wildlife Fund. Available at: https://www.worldwildlife.org/ blogs/sustainability-works/posts/innovation-in-reducing-methane-emissions-from-the-food- sector-side-of-rice-hold-the-methane [accessed July 2023].

Kusuma, R. T., R. B. Hiremath, P. Rajesh, B. Kumar and S. Renukappa (2022). Sustainable transition towards biomass-based cement industry: A review. Renewable and Sustainable Energy Reviews, 163, 112503.

Lacy, P. and J. Rutqvist (2015). Waste to wealth: The circular economy advantage. Accenture Strategy.

Lai, C. (2022). System of rice intensification: A solution to methane emissions and food insecurity. Earth.org. Available at: https://earth.org/system-of-rice-intensification/ [accessed July 2023].

Le Quéré, C., R. Jackson, M. Jones, A. Smith, S. Abernethy, R. Andrew, A. De-Gol, D. Willis, Y. Shan,

J. Canadell, P. Friedlingstein, F. Creutzig and G. Peters (2020). Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature Climate Change, 10(7), 1–7.

LeadIT (2023). Green steel tracker. Leadership Group for Industry Transition (LeadIT). Available at: https://www.industrytransition.org/green-steel-tracker/ [accessed May 2023].

Lehne, J. and F. Preston (2018). Making concrete change: Innovation in low-carbon cement and concrete. London: Chatham House. Available at: www.chathamhouse.org/sites/default/files/publications/research/2018-06-13-making-concrete-change-cement-lehne-preston.pdf.

Leoni, L., A. Cantini, F. De Carlo, M. Salvio, C. Martini, C. Toro and F. Martini (2021). Energy-saving technology opportunities and investments of the Italian foundry industry. Energies, 14(24), 8470.

Leveau, M. (2022). The FoodTech Innovation ‘blind spots’ of the last decade – Going beyond the hype – Part 1. Forward Fooding. Available at: https://forwardfooding.com/blog/foodtech-trends-and-insights/the-foodtech-innovation-blind-spots-go-beyond-the-hype-part-1/ [accessed 2023 June].

Li, J., M. Barwood and S. Rahimifard (2018). Robotic disassembly for increased recovery of strategically important materials from electrical vehicles. Robotics and Computer-Integrated Manufacturing, 50, 203–12.

Li, J., Y. Xin and L. Yuan (2009). Hybrid rice technology development: Ensuring China’s food security, IFPRI discussion paper. Washington, D.C: International Food Policy Research Institute (IFPRI). Available at: http://www.ifpri.org/publication/hybrid-rice-technology-development.

Linquist, B., K. J. van Groenigen, M. A. Adviento-Borbe, C. Pittelkow and C. van Kessel (2012). An agronomic assessment of greenhouse gas emissions from major cereal crops. Global Change Biology, 18(1), 194–209.

Liu, C., Z. Chen, Y. Mao, Z. Yao, W. Zhang, W. Ye, Y. Duan and Q. Xie (2022). Analysis and optimization of grinding performance of vertical roller mill based on experimental method. Minerals, 12(2), 133.

Lucertini, G. and F. Musco (2020). Circular urban metabolism framework. One Earth, 2(2), 138–42. Maasakkers, J. D., D. J. Varon, A. Elfarsdóttir, J. McKeever, D. Jervis, G. Mahapatra, S. Pandey,

A. Lorente, T. Borsdorff, L. R. Foorthuis, B. J. Schuit, P. Tol, T. A. van Kempen, R. van Hees and

I. Aben (2022). Using satellites to uncover large methane emissions from landfills. Science Advances, 8(32), eabn9683.

Maghazei, O. and T. Netland (2020). Drones in manufacturing: Exploring opportunities for research and practice. Journal of Manufacturing Technology Management, 31(6), 1237–1259.

Maltais, A., L. Linde, F. Sanchez and G. Mete (2022). The role of international finance institutions in the transition to low-carbon steel production. Leadership Group for Industry Transition (LeadIT). Available at: https://www.sei.org/wp-content/uploads/2022/11/report-2209a-ifis-lhv2.pdf.

MarketsandMarkets (2023a). Agricultural robots market industry analysis: Types, advantages, and forecast. MarketsandMarkets. Available at: https://www.marketsandmarkets.com/Market- Reports/agricultural-robot-market-173601759.html [accessed July 2023].

MarketsandMarkets (2023b). Agriculture drones market share, industry size and growth forecast – 2030. MarketsandMarkets. Available at: https://www.marketsandmarkets.com/Market- Reports/agriculture-drones-market-23709764.html [accessed July 2023].

MarketsandMarkets (2023c). Precision farming market size, share, industry report, revenue trends and growth drivers. MarketsandMarkets. Available at: https://www.marketsandmarkets. com/Market-Reports/precision-farming-market-1243.html [accessed October 2023].

Marmier, A. (2023). Decarbonisation options for the cement industry. Luxembourg: Publications Office of the European Union. Available at: https://publications.jrc.ec.europa.eu/repository/ handle/JRC131246.

Martin-Roberts, E., V. Scott, S. Flude, G. Johnson, R. S. Haszeldine and S. Gilfillan (2021). Carbon capture and storage at the end of a lost decade. One Earth, 4(11), 1569–84.

Mastrucci, A., E. Byers, S. Pachauri and N. D. Rao (2019). Improving the SDG energy poverty targets: Residential cooling needs in the Global South. Energy and Buildings, 186, 405–15.

Material Economics (2018). The circular economy – A powerful force for climate mitigation. Available at: https://circulareconomy.europa.eu/platform/en/knowledge/ circular-economy-powerful-force-climate-mitigation.

Material Economics (2019). Industrial transformation 2050: Pathways to net-zero emissions from EU heavy industry (executive summary), Net Zero 2050 (Executive summary). Cambridge:

University of Cambridge Institute for Sustainability Leadership (CISL). Available at: https:// europeanclimate.org/wp-content/uploads/2019/11/25-04-2019-industrial-transformation-2050- executive-summary.pdf.

McKinsey (2020). Laying the foundation for zero-carbon cement. Chemicals Practice, McKinsey & Company. Available at: https://www.naiopmd.org/wp-content/uploads/2022/08/Cement- McKinsey-laying-the-foundation-for-zero-carbon-cement-v3.pdf.

McKinsey (2022a). How a steel plant in India tapped the value of data – and won global acclaim, Impact story. McKinsey & Company. Available at: https://www.mckinsey.com/industries/metals- and-mining/how-we-help-clients/how-a-steel-plant-in-india-tapped-the-value-of-data-and-won-  global-acclaim [accessed May 2023].

McKinsey (2022b). Make room for alternative proteins: What it takes to build a new sector. McKinsey & Company. Available at: https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/ make-room-for-alternative-proteins-what-it-takes-to-build-a-new-sector#/.

McKinsey (2023a). Autonomous driving’s future: Convenient and connected. McKinsey & Company. Available at: https://www.mckinsey.com/industries/automotive-and-assembly/our- insights/autonomous-drivings-future-convenient-and-connected [accessed September 2023].

McKinsey (2023b). The future of mobility. McKinsey Quarterly, McKinsey Center for Future Mobility. Available at: https://www.mckinsey.com/industries/automotive-and-assembly/ our-insights/the-future-of-mobility-mobility-evolves.

Menon, J. S. and R. Sharma (2021). Nature-based solutions for co-mitigation of air pollution and urban heat in Indian cities. Frontiers in Sustainable Cities, 3.

Merfort, L., N. Bauer, F. Humpenöder, D. Klein, J. Strefler, A. Popp, G. Luderer and E. Kriegler (2023). State of global land regulation inadequate to control biofuel land-use-change emissions. Nature Climate Change, 13(7), 610–12.

MIT (2023a). Minimizing electric vehicles’ impact on the grid. Massachusetts Institute of Technology (MIT). Available at: https://www.sciencedaily.com/releases/2023/03/230315132448. htm [accessed July 2023].

MIT (2023b). Soil-based carbon sequestration. Massachusetts Institute of Technology (MIT). Available at: https://climate.mit.edu/explainers/soil-based-carbon-sequestration [accessed June 2023].

Mohammadshahi, S., M. R. Tavakoli, H. Samsam-Khayani, M. Nili-Ahmadabadi and K. C. Kim (2019). Investigation of naturally ventilated shavadoons component: Architectural underground pattern on ventilation. Tunnelling and Underground Space Technology, 91, 102990.

Monkman, S., P. Kenward, G. Dipple, M. MacDonald and M. Raudsepp (2018). Activation of cement hydration with carbon dioxide. Journal of Sustainable Cement-Based Materials, 7(3), 160–81.

Mourão, J. M., I. Cameron, M. Huerta, N. Patel and R. Pereira (2020). Comparison of sinter and pellet usage in an integrated steel plant. In ABM BRAZIL – 2013 Annual Congress. Belo Horizonte, Brazil.

Musa, A. A., S. I. Malami, F. Alanazi, W. Ounaies, M. Alshammari and S. I. Haruna (2023). Sustainable traffic management for smart cities using internet-of-things-oriented intelligent transportation systems (ITS): Challenges and recommendations. Sustainability, 15(13), 9859.

Mutschler, R., M. Rüdisüli, P. Heer and S. Eggimann (2021). Benchmarking cooling and heating energy demands considering climate change, population growth and cooling device uptake. Applied Energy, 288, 116636.

Nawaz, A., A. U. Rehman, A. Rehman, S. Ahmad, K. H. M. Siddique and M. Farooq (2022). Increasing sustainability for rice production systems. Journal of Cereal Science, 103, 103400.

Net Zero Insights (2023). An overview of the green steel startups and initiatives. Available at: https://netzeroinsights.com/resources/market-insights/green-steel-startups-funding- landscape/ [accessed May 2023].

Ngige, L. (2022). Africa agrifoodtech startups raise $1bn in 5 years, but just 1% of global investment. Agfunder Network. Available at: https://agfundernews.com/africa-agrifoodtech- startups-raise-1bn-in-5-years [accessed October 2023].

Nguyen, L. D., A. Bröring, M. Pizzol and P. Popovski (2022). Analysis of distributed ledger technologies for industrial manufacturing. Scientific Reports, 12(1), 18055.

Nhamo, G., C. Nhemachena and S. Nhamo (2020). Using ICT indicators to measure readiness of countries to implement Industry 4.0 and the SDGs. Environmental Economics and Policy Studies, 22(2), 315–37.

Nicholas, S. and S. Basirat (2022). Iron ore quality a potential headwind to green steelmaking: Technology and mining options are available to hit net-zero steel targets. Institute for Energy Economics and Financial Analysis (IEEFA). Available at: https://ieefa.org/resources/

iron-ore-quality-potential-headwind-green-steelmaking-technology-and-mining-options-are.

Nikitas, D. A. and P. M. Karlsson (2015). A worldwide state-of-the-art analysis for bus rapid transit: Looking for the success formula. Journal of Public Transportation, 18(1), 1–33.

Noailly, J. (2022). Directing innovation towards a low-carbon future, Economic Research Working Paper No. 72. Geneva: World Intellectual Property Organization (WIPO). Available at: https:// www.wipo.int/publications/en/details.jsp?id=4599&plang=EN.

O’Sullivan, A., G. D. Bonnett, C. L. McIntyre, Z. Hochman and A. P. Wasson (2019). Strategies to improve the productivity, product diversity and profitability of urban agriculture. Agricultural Systems, 174, 133–44.

OECD (2015). Energy efficiency in the steel sector: why it works well, but not always. Paris: Organisation for Economic Co-operation and Development (OECD). Available at: https://www. oecd.org/sti/ind/Energy-efficiency-steel-sector-1.pdf.

OECD (2021). Latest developments in steelmaking capacity. Organisation for Economic Co- operation and Development (OECD). Available at: https://www.oecd.org/industry/ind/latest- developments-in-steelmaking-capacity-2021.pdf.

OECD (2022a). Assessing steel decarbonization progress: ready for the decade of delivery? Organisation for Economic Co-operation and Development (OECD). Available at: https://www. oecd.org/industry/ind/assessing-steel-decarbonisation-progress.pdf.

OECD (2022b). Global plastics outlook: Policy scenarios to 2060. Paris. Available at: https://www. oecd-ilibrary.org/environment/global-plastics-outlook_aa1edf33-en.

OECD (2022c). Plastic pollution is growing relentlessly as waste management and recycling fall short, says OECD. Available at: https://www.oecd.org/environment/plastic-pollution-is-growing- relentlessly-as-waste-management-and-recycling-fall-short.htm [accessed July 2023].

OECD (2023). Climate change and plastic pollution, Policy highlights. Organisation for Economic Co-operation and Development (OECD). Available at: https://www.oecd.org/environment/ plastics/Policy-Highlights-Climate-change-and-plastics-pollution-Synergies-between-two-crucial-environmental-challenges.pdf.

OECD and FAO (2023). OECD–FAO Agricultural Outlook 2023–2032. Paris: Organisation for Economic Co-operation and Development (OECD). Available at: https://www.fao.org/documents/ card/en/c/cc6361en.

Oksen, P. (2001). Cattle, conflict and change: Animal husbandry and Fulani Farmer interactions in Boulgou province, Burkina Faso. Unpublished thesis (Ph.D.), Roskilde University.

Oksen, P. (2023). Climate smart technologies in adaptation – Agriculture. Sustainable Success Stories. Available at: https://sustainablesuccessstories.org/technologies/climate-smart- technolgies-adaptation-agriculture/ [accessed July 2023].

Olabi, A. G., T. Wilberforce, K. Obaideen, E. T. Sayed, N. Shehata, A. H. Alami and M. A. Abdelkareem (2023). Micromobility: Progress, benefits, challenges, policy and regulations, energy sources and storage, and its role in achieving Sustainable Development Goals. International Journal of Thermofluids, 17, 100292.

Paradisi, L. (2021). Understanding the future of protein. Forward Fooding. Available at: https:// forwardfooding.com/blog/foodtech-trends-and-insights/understanding-the-future-of-protein/ [accessed July 2023].

Pasture.io (2023). Scientists are breeding climate-friendly cows & soon they’ll be on your farm. Pasture.io. Available at: https://pasture.io/dairy-industry/breeding-climate-friendly-cows [accessed July 2023].

Patsavellas, J. and K. Salonitis (2019). The carbon footprint of manufacturing digitalization: critical literature review and future research agenda. Procedia CIRP, 81, 1354–59.

Peng, T., K. Kellens, R. Tang, C. Chen and G. Chen (2018). Sustainability of additive manufacturing: An overview on its energy demand and environmental impact. Additive Manufacturing, 21, 694–704.

PepsiCo (2023). Pepsico issues new $1.25 billion 10-year green bond as company accelerates pep+ transformation. PepsiCo. Available at: https://www.pepsico.com/our-stories/press-release/ pepsico-issues-new-125-billion-10-year-green-bond-as-company-accelerates-pep-tra07202022 [accessed October 2023].

PFPI (2018). Letter from scientists to the EU Parliament regarding forest biomass. Partnership for Policy Integrity (PFPI). Available at: https://www.pfpi.net/wp-content/uploads/2018/04/ UPDATE-800-signatures_Scientist-Letter-on-EU-Forest-Biomass.pdf [accessed July 2023].

Pixalytics (2023). How many earth observation satellites orbiting in 2023? Pixalytics. Available at: https://www.pixalytics.com/earth-observation-satellites-2023/ [accessed October 2023].

Pombo, O., B. Rivela and J. Neila (2019). Life cycle thinking toward sustainable development policy-making: The case of energy retrofits. Journal of Cleaner Production, 206, 267–81.

Poschmann, H., H. Brüggemann and D. Goldmann (2020). Disassembly 4.0: A review on using robotics in disassembly tasks as a way of automation. Chemie Ingenieur Technik, 92.

Potochnik, J. and A. Wijkman (2022). From ‘greening’ the present system to real transformation – Transforming resource use for human wellbeing and planetary stability, Earth4all: Deep-dive paper 12. Earth4All. Available at: https://www.clubofrome.org/wp-content/uploads/2022/10/ Earth4All_Deep_Dive_Wijkman-2.pdf.

Powlson, D. S., C. M. Stirling, M. L. Jat, B. G. Gerard, C. A. Palm, P. A. Sanchez and K. G. Cassman (2014). Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 4(8), 678–83.

Precedence Research (2023). Regenerative agriculture market. Precedence Research. Available at: https://www.precedenceresearch.com/regenerative-agriculture-market [accessed October 2023].

Probst, B., S. Touboul, M. Glachant and A. Dechezleprêtre (2021). Global trends in the invention and diffusion of climate change mitigation technologies. Nature Energy, 6, 1077–86.

Protein Directory (2023). Protein Directory – The largest alt protein database globally. Available at: https://proteindirectory.com/ [accessed June 2023].

PwC (2022). State of climate tech 2022: Overcoming inertia in climate tech ivnesting. Available at: https://www.pwc.com/gx/en/services/sustainability/publications/overcoming-inertia-in- climate-tech-investing.html.

Rahaee, O. (2013). Cultural identity and its effects on indigenous methods of natural ventilation passage of metal smiths in Dezful’s old bazzar. The Monthly Scientific Journal of Bagh-e Nazar, 10(24), 39–46.

Rahman, A., M. G. Rasul, M. M. K. Khan and S. Sharma (2015). Recent development on the uses of alternative fuels in cement manufacturing process. Fuel, 145, 84–99.

Rainbow, R. and R. Derpsch (2011). Advances in no-till farming technologies and soil compaction management in rainfed farming systems. In Tow, P., I. Cooper, I. Partridge and C. Birch (eds), Rainfed farming systems. Dordrecht: Springer Netherlands, 991–1014.

Rauch, E. and D. T. Matt (2021). Status of the implementation of Industry 4.0 in SMEs and framework for smart manufacturing. In Matt, D. T., V. Modrák and H. Zsifkovits (eds), Implementing Industry 4.0 in SMEs: Concepts, examples and applications. Springer International Publishing, 3–26.

Reck, D. J., H. Martin and K. W. Axhausen (2022). Mode choice, substitution patterns and environmental impacts of shared and personal micro-mobility. Transportation Research Part D: Transport and Environment, 102, 103134.

Renaldi, R., N. D. Miranda, R. Khosla and M. D. McCulloch (2021). Patent landscape of not-in-kind active cooling technologies between 1998 and 2017. Journal of Cleaner Production, 296, 126507.

Richstein, J. C. and K. Neuhoff (2022). Carbon contracts-for-difference: How to de-risk innovative investments for a low-carbon industry? iScience, 25(8), 104700.

Ritchie, H. (2021). Cutting down forests: What are the drivers of deforestation? OurWorldinData. org. Available at: https://ourworldindata.org/what-are-drivers-deforestation [accessed August 2023].

Ritchie, H., F. Spooner and M. Roser (2021). Deforestation and forest loss. OurWorldInData.org. Available at: https://ourworldindata.org/forests-and-deforestation [accessed August 2023].

Ross, E. B. (1998). The Malthus factor: Population, poverty, and politics in capitalist development, London, New York: Zed Books.

Sawyer, T. (2016). The use of limestone as an extender and its effect on concrete properties. Unpublished thesis.

Sayem, A., P. K. Biswas, M. M. A. Khan, L. Romoli and M. Dalle Mura (2022). Critical barriers to Industry 4.0 adoption in manufacturing organizations and their mitigation strategies. Journal of Manufacturing and Materials Processing, 6(6), 136.

Schaart, E. (2020). Denmark’s ‘devilish’ waste dilemma. Politico. Available at: https://www. politico.eu/article/denmark-devilish-waste-trash-energy-incineration-recycling-dilemma/ [accessed July 2023].

Schaller, B. (2021). Can sharing a ride make for less traffic? Evidence from Uber and Lyft and implications for cities. Transport Policy, 102, 1–10.

Schwanen, T., D. Banister and J. Anable (2011). Scientific research about climate change mitigation in transport: A critical review. Transportation Research Part A: Policy and Practice, 45(10), 993–1006.

SEI and CEEW (2022). Stockholm+50: Unlocking a better future. Stockholm: Stockholm Environment Institute (SEI). Available at: https://www.stockholm50.report/unlocking-a-better- future.pdf.

Shaohua, C., H. Murano, T. Hirano, Y. Hayashi and H. Tamura (2020). Establishment of a novel technology permitting self-sufficient, renewable energy from rice straw in paddy fields. Journal of Cleaner Production, 272, 122721.

Sice, C. and J. Faludi (2021). Comparing environmental impacts of metal additive manufacturing to conventional manufacturing. Proceedings of the Design Society, 1, 671–80.

Simoni, M., M. D. Wilkes, S. Brown, J. L. Provis, H. Kinoshita and T. Hanein (2022). Decarbonising the lime industry: State-of-the-art. Renewable and Sustainable Energy Reviews, 168, 112765.

Sivaram, V. (2022). Climate change. MIT Technology Review, 125(4).

Skinner, B. and R. Lalit (2023). With concrete, less is more. Rocky Mountain Institute (RMI). Available at: https://rmi.org/with-concrete-less-is-more/ [accessed May 2023].

Skoczinski, P., M. Carus, G. Tweddle, P. Ruiz, D. de Guzman, J. Ravenstijn, H. Käb, N. Hark, L. Dammer and A. Raschka (2023). Bio-based building blocks and polymers: Global capacities, production and trends 2022–2027. nova-

Institute. Available at: https://renewable-carbon.eu/publications/product/bio-based-building-blocks-and-polymers-global-capacities-production-and-trends-2022-2027/

Smith, S. (2023). 10 things you should do to get started with regenerative grazing. Noble Research Institute. Available at: https://www.noble.org/regenerative-agriculture/10-things-you- should-do-to-get-started-with-regenerative-grazing/ [accessed July 2023].

Songwe, V., N. Stern and A. Bhattacharya (2022). Finance for climate action: scaling up investment for climate and development. London: Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science. Available at: https://www.lse. ac.uk/granthaminstitute/wp-content/uploads/2022/11/IHLEG-Finance-for-Climate-Action.pdf.

Sozzi, M., A. Cogato, S. Nale and S. Gatto (2018). Patent trends in agricultural engineering. Jelgava, Latvia: Engineering for rural development and University of Padova, Italy. Available at: https:// www.tf.lbtu.lv/conference/proceedings2018/Papers/N329.pdf.

Spears, S. (2018). What is biochar? Regeneration International. Available at: https:// regenerationinternational.org/2018/05/16/what-is-biochar/ [accessed June 2023].

Statistics Denmark (2018). Precision agriculture. Nyt fra Danmarks Statistik, Copenhagen: Statistics Denmark. Available at: https://www.dst.dk/Site/Dst/SingleFiles/GetArchiveFile. aspx?fi=formid&fo=agriculture-2018--pdf&ext.

Stevens, I., A. Garvey, J. Barrett and J. Norman (2022). Policy options for a net-zero emissions UK steel sector,. CREDS policy brief. Oxford, UK: Centre for Research into Energy Demand Solutions (CREDS). Available at: https://www.creds.ac.uk/publications/ policy-options-for-a-net-zero-emissions-uk-steel-sector/.

Sun, F., J. Qin, Z. Wang, M. Yu, X. Wu, X. Sun and J. Qiu (2021). Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nature Communications, 12(1), 4182.

Svatoš-Ražnjević, H., L. Orozco and A. Menges (2022). Advanced timber construction industry: A review of 350 multi-storey timber projects from 2000 and 2021. Buildings, 12(4), 404.

Syngenta (2023). Syngenta Group reports record $33.4 billion sales and $5.6 billion EBITDA in 2022. Syngenta Group. Available at: https://www.syngentagroup.com/en/media/syngenta- news/year/2023/syngenta-group-reports-record-334-billion-sales-and-56-billion-ebitda [accessed July 2023].

Tabrizi, S., A. N. Rollinson, M. Hoffmann and E. Favoino (2020). Understanding the environmental impacts of chemical recycling – Ten concerns with existing life cycle assessments. Brussels:

Zero Waste Europe. Available at: https://zerowasteeurope.eu/library/understanding- the-environmental-impacts-of-chemical-recycling-ten-concerns-with-existing-life-cycle-  assessments/.

Taleb, H. M. (2014). Using passive cooling strategies to improve thermal performance and reduce energy consumption of residential buildings in U.A.E. buildings. Frontiers of Architectural Research, 3(2), 154–65.

Tangri, N. (2023). Waste incinerators undermine clean energy goals. PLOS Climate, 2(6).

The Concrete Centre (2020). Remixed: how concrete is evolving for a net-zero built environment. Concrete futures. Available at: https://www.concretecentre.com/TCC/media/TCCMediaLibrary/ Publications/Promo%20Links/Concrete_Futures_Remixed_2020.pdf.

Tikoudis, I., L. Martinez, K. Farrow, C. García Bouyssou, O. Petrik and W. Oueslati (2021). Ridesharing services and urban transport CO2 emissions: Simulation-based evidence from 247 cities. Transportation Research Part D: Transport and Environment, 97, 102923.

Touboul, S. (2021). Technological innovation and adaptation to climate change. Paris: Université Paris sciences et lettres. Available at: https://pastel.hal.science/tel-03610832/document.

Transport & Environment (2023). Clean and lean: Battery metals demand from electrifying passenger transport. Brussels: Transport & Environment. Available at: https://www.transportenvironment.org/discover/clean-and-lean-battery-metals-demand-from-electrifying-cars-vans-and-buses/

Trappey, A. J. C., G.-B. Lin, H.-K. Chen and M.-C. Chen (2023). A comprehensive analysis of global patent landscape for recent R&D in agricultural drone technologies. World Patent Information, 74, 102216.

Traugott, J. (2023). California wants to make bidirectional charging mandatory for new electric vehicles. Carbuzz. Available at: https://carbuzz.com/news/california-wants-to-make- bidirectional-charging-mandatory-for-new-electric-vehicles [accessed July 2023].

Trendov, N. M., S. Varas and M. Zeng (2019). Digital technologies in agriculture and rural areas: Status report. Rome: Food and Agriculture Organization of the United Nations (FAO). Available at: https://www.fao.org/3/ca4985en/ca4985en.pdf.

UDP (2021). Climate technologies in an urban context. Copenhagen, Denmark: UNEP DTU Partnership (UDP). Available at: https://tech-action.unepccc.org/publications/ climate-technologies-in-an-urban-context/.

Ueckerdt, F., C. Bauer, A. Dirnaichner, J. Everall, R. Sacchi and G. Luderer (2021). Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nature Climate Change, 11(5), 384–93.

UK IPO (2021). Greener buildings and heat pumps. Newport: United Kingdom Intellectual Property Office (UK IPO). Available at: https://www.gov.uk/government/ publications/a-worldwide-overview-of-greener-buildings-and-heat-pump-patents.

Umali-Deininger, D. (2022). Greening the rice we eat. Washington, DC: World Bank. Available at: https://blogs.worldbank.org/eastasiapacific/ greening-rice-we-eat?cid=SHR_BlogSiteEmail_EN_EXT.

UN (2023). Peace, dignity and equality on a heathy planet. United Nations (UN). Available at: https://www.un.org/en/global-issues/population [accessed May 2023].

UN Habitat (2022). World cities report 2022: Envisaging the future of cities. Nairobi: UN Habitat. Available at: https://unhabitat.org/wcr/.

UNCTAD (2022). What is ‘Industry 4.0’ and what will it mean for developing countries? United Nations Conference on Trade and Development (UNCTAD). Available at: https://unctad.org/ news/blog-what-industry-40-and-what-will-it-mean-developing-countries [accessed May 2023].

UNCTAD (2023a). Escalating debt challenges are inhibiting achievement of the SDGs. 221 United Nations Conference on Trade and Development (UNCTAD). Available at: https://sdgpulse.unctad. org/debt-sustainability/ [accessed August 2023].

UNCTAD (2023b). A world of debt: A growing burden to global prosperity. 221 United Nations Conference on Trade and Development (UNCTAD). Available at: https://unctad.org/publication/ world-of-debt.

UNEP-CCC (2022). The climate technology progress report 2022. Copenhagen, Denmark: Copenhagen Climate Centre (CCC), UNFCCC Technology Executive Committee (TEC) and United Nations Environment Programme (UNEP). Available at: https://unepccc.org/publications/the-climate-technology-progress-report-2022/

UNEP (2020). Cooling emissions and policy synthesis report. Nairobi, Paris: United Nations Environment Programme (UNEP) and International Energy Agency (IEA). Available at: https:// www.unep.org/resources/report/cooling-emissions-and-policy-synthesis-report.

UNEP (2021). From pollution to solution: A global assessment of marine litter and plastic pollution. Nairobi: United Nations Environment Programme (UNEP). Available at: https://www.unep.org/ resources/pollution-solution-global-assessment-marine-litter-and-plastic-pollution.

UNEP (2023a). Harnessing technology in the circular economy for climate action in Africa, CTCN knowledge brief series. Nairobi: United Nations Environment Programme (UNEP). Available at: https://www.ctc-n.org/news/climate-action-africa-harnessing-technology-circular-economy.

UNEP (2023b). Topic sheet: Just transition. United Nations Environment Programme (UNEP). Available at: https://wedocs.unep.org/20.500.11822/42231.

UNEP (2023c). Turning off the tap: How the world can end plastic pollution and create a circular economy. Nairobi: United Nations Environment Programme (UNEP). Available at: https://www. unep.org/resources/turning-off-tap-end-plastic-pollution-create-circular-economy.

UNEP FI (2023). Climate risks in the industrials sector, Sectoral Risk Briefings: Insights for Financial Institutions. UN Environment Programme Finance Initiative. Available at: https://www.unepfi. org/wordpress/wp-content/uploads/2023/04/Climate-Risks-in-the-Industrials-Sector.pdf.

UNFCCC (2023a). Land use, land-use change and forestry (LULUCF). United Nations Framework Convention on Climate Change (UNFCCC). Available at: https://unfccc.int/topics/land-use/ workstreams/land-use--land-use-change-and-forestry-lulucf [accessed August 2023].

UNFCCC (2023b). Land use, land-use change and forestry (LULUCF). United Nations Framework Convention on Climate Change (UNFCCC). Available at: https://unfccc.int/topics/land-use/ workstreams/land-use--land-use-change-and-forestry-lulucf [accessed July 2023].

UNIDO (2019). Industrial energy efficiency improvement project in South Africa. United Nations Industrial Development Organization (UNIDO). Available at: https://mkiee.ea.gov.mk/wp- content/uploads/2019/11/International-UNIDO-SA-IEE-Project-Arcelormittal-Saldanha-Works- Case-Study.pdf.

United Nations (2019). The Sustainable Development Goals report 2019. New York, NY: UN Department of Economic and Social Affairs (DESA). Available at: https://unstats.un.org/sdgs/ report/2019/.

United Nations (2020). Roadmap for digital cooperation. Available at: https://www.un.org/en/ content/digital-cooperation-roadmap/assets/pdf/Roadmap_for_Digital_Cooperation_EN.pdf.

United Nations (2022). The Sustainable Development Goals report 2022. UN Department of Economic and Social Affairs (DESA). Available at: https://unstats.un.org/sdgs/report/2022/.

United Nations (2023). Finance & justice. Available at: https://www.un.org/en/climatechange/ raising-ambition/climate-finance [accessed October 2023].

USDA (2022). Partnerships for climate-smart commodities. United States Department for Agriculture (USDA). Available at: www.usda.gov/climate-solutions/climate-smart-commodities.

van den Bergh, J. and I. Savin (2021). Impact of carbon pricing on low-carbon innovation and deep decarbonisation: Controversies and path forward. Environmental and Resource Economics, 80(4), 705–15.

VDZ (2021). Environmental data of the German cement industry. Verein Deutscher Zementwerke (VDZ). Available at: https://www.vdz-online.de/fileadmin/wissensportal/publikationen/ umweltschutz/Umweltdaten/VDZ-Umweltdaten_Environmental_Data_2021.pdf.

Vogl, V., M. Åhman and L. J. Nilsson (2018). Assessment of hydrogen direct reduction for fossil- free steelmaking. Journal of Cleaner Production, 203, 736–45.

Vogl, V., O. Olsson and B. Nykvist (2021). Phasing out the blast furnace to meet global climate targets. Joule, 5(10), 2646–62.

Wang, P., M. Ryberg, Y. Yang, K. Feng, S. Kara, M. Hauschild and W.-Q. Chen (2021). Efficiency stagnation in global steel production urges joint supply – and demand – side mitigation efforts. Nature Communications, 12(1), 2066.

WEF (2021). Net-zero challenge: The supply chain opportunity, Insight report. World Economic Forum (WEF). Available at: https://www3.weforum.org/docs/WEF_Net_Zero_Challenge_The_ Supply_Chain_Opportunity_2021.pdf.

WEF (2022). Digital solutions can reduce global emissions by up to 20%: Here’s how. World Economic Forum (WEF). Available at: https://www.weforum.org/agenda/2022/05/how-digital- solutions-can-reduce-global-emissions/ [accessed May 2023].

Werner, S. (2017). International review of district heating and cooling. Energy, 137.

Westerholm, N. (2023). Unlocking the potential of local circular construction materials in urbanising Africa. United Nations One Planet Sustainable Buildings and Construction Programme. Available at: https://www.oneplanetnetwork.org/knowledge-centre/resources/ unlocking-potential-local-circular-construction-materials-urbanising.

Westervelt, A. (2023). Big oil firms touted algae as climate solution: Now all have pulled funding. The Guardian. Available at: https://www.theguardian.com/environment/2023/mar/17/ big-oil-algae-biofuel-funding-cut-exxonmobil.

WHO (2012). Health in the green economy: Health co-benefits of climate change mitigation Transport sector. World Health Organization (WHO). Available at: https://apps.who.int/iris/ handle/10665/70913.

Wijewardane, S. (2022). Inventions, innovations, and new technologies: Paints and coatings for passive cooling. Solar Compass, 3–4, 100032.

WIPO (2022). Global innovation index 2022: What is the future of innovation-driven growth? Geneva: World Intellectual Property Organization (WIPO). Available at: https://www.wipo.int/ global_innovation_index/en/.

WIPO (2023). Global Innovation Index (GII). World Intellectual Property Organization (WIPO). Available at: https://www.wipo.int/global_innovation_index/en/index.html.

Wood Mackenzie (2022). Pedal to the metal: Iron and steel’s US$1.4 trillion shot at decarbonisation. Horizons. Available at: https://www.woodmac.com/horizons/pedal-to-the- metal-iron-and-steels-one-point-four-trillion-usd-shot-at-decarbonisation/ [accessed May 2023].

Woolley, E., Y. Luo and A. Simeone (2018). Industrial waste heat recovery: A systematic approach. Sustainable Energy Technologies and Assessments, 29, 50–59.

World Bank (2022). Population, total, World population prospects: 2022 Revision. Available at: https://data.worldbank.org/indicator/SP.POP.TOTL?end=2022&start=1973 [accessed November 2023].

World Bank (2023a). Eight Amazonian countries with the power to save the planet. The World Bank. Available at: https://www.worldbank.org/en/news/feature/2023/07/05/ocho-paises-de-la- amazonia-con-el-poder-de-salvar-el-planeta-america-latina [accessed July 2023].

World Bank (2023b). Sustainable agriculture transformation project. World Bank. Available at: https://projects.worldbank.org/en/projects-operations/project-detail/P145055 [accessed August 2023].

World Bank (2023c). Water in agriculture. World Bank. Available at: https://www.worldbank.org/ en/topic/water-in-agriculture [accessed May 2023].

World Bank (2023d). World bank loan will support reducing methane, saving water in Hunan’s rice paddies. World Bank Group. Available at: https://www.worldbank.org/en/news/press- release/2023/05/31/world-bank-loan-will-support-reducing-methane-saving-water-in-hunan-s- rice-paddies [accessed October 2023].

World Steel Association (2021a). Fact sheet: Scrap use in the steel industry. Available at: https:// worldsteel.org/wp-content/uploads/Fact-sheet-on-scrap_2021.pdf [accessed May 2023].

World Steel Association (2021b). Raw materials: Maximising scrap use helps reduce CO2 emissions. Available at: https://worldsteel.org/steel-topics/raw-materials/ [accessed May 2023].

World Steel Association (2021c). Steel industry key facts. Available at: https://worldsteel.org/ about-steel/steel-industry-facts/ [accessed May 2023].

WRI (2023a). The global land squeeze: Managing the growing competition for land. World Resources Institute (WRI). Available at: https://www.wri.org/research/ global-land-squeeze-managing-growing-competition-land.

WRI (2023b). Our world in data: Emissions by sector. World Reesources Institute (WRI). Available at: https://ourworldindata.org/emissions-by-sector [accessed June 2023].

WRI Brazil (2023). Global BRT data. World Resources Institute (WRI) Brasil Ross Center for Sustainable Cities. Available at: https://brtdata.org/.

WWF (2008). How to turn around the trend of cement related emissions in the developing world. Gland, Switzerland: WWF International. Available at: https://wwfint.awsassets.panda.org/ downloads/english_report_lr_pdf.pdf.

Xiaodan, Y. (2022). Rice can also reduce carbon emissions! A low-carbon experiment in the field: How to build a closed loop of technology, cost, and carbon trading? Daily Economic News newspaper. Available at: https://www.nbd.com.cn/articles/2022-10-21/2505684.html [accessed July 2023].

Xie, H., Y. Bian, X. He, X. Guo and P. Oksen (2022). Progress in hydrogen fuel cell technology development and deployment in China. Geneva: WIPO, Global Challenges Division. Available at: https://dx.doi.org/10.34667/tind.44764.

Xu, H.-l., F. Qin, Q. Xu, G. Ma, F. Li and J. Li (2012). Paddy rice can be cultivated in upland conditions by film mulching to create anaerobic soil conditions. Journal of Food Agriculture and Environment, 10(2), 695–702.

Xu, Y., D. Zaelke, G. J. M. Velders and V. Ramanathan (2013). The role of HFCs in mitigating 21st century climate change. Atmospheric Chemistry & Physics, 13, 6083–89.

Zeng, Y. and R. Cecil (2021). High-grade iron ore supply to struggle to meet demand as China decarbonizes: MI. S&P Global Market Intelligence. Available at: https://www.spglobal.com/ commodityinsights/en/market-insights/latest-news/metals/060821-high-grade-iron-ore-supply- to-struggle-to-meet-demand-as-china-decarbonizes-mi [accessed May 2023].

Zernicke, C., A. Hafner, A. Abecker and H. Stolpe (2023). WEB-GIS-TOOL: Estimation of greenhouse gas savings due timber use in the urban built environment. Oslo, Norway: World Conference on Timber Engineering 2023.

Zero Waste Europe (2020a). Reusable VS single-use packaging: A review of environmental impact. Brussels: Zero Waste Europe. Available at: https://zerowasteeurope.eu/library/ reusable-vs-single-use-packaging-a-review-of-environmental-impact/.

Zero Waste Europe (2020b). Why co-incineration of waste is not taxonomy-compliant and should be excluded. Brussels: Zero Waste Europe. Available at: https://zerowasteeurope.eu/library/ why-co-incineration-of-waste-is-not-taxonomy-compliant-and-should-be-excluded/.

Zero Waste Europe (2023). Nothing left behind: Modelling material recovery and biological treatment’s contribution to resource recovery and fighting climate change. Brussels: Zero Waste Europe. Available at: https://zerowasteeurope.eu/library/nothing-left-behind-mrbt-costs-study/.

Zero Waste Scotland (2018). A scheme for Scotland. Available at: https://depositreturnscheme. zerowastescotland.org.uk/benefits#:~:text=Tackling%20climate%20change&text=The%20 scheme%20will%20cut%20emissions,one%20year%20in%20the%20UK [accessed July 2023].

Zheng, J. and S. Suh (2019). Strategies to reduce the global carbon footprint of plastics. Nature Climate Change, 9, 374–378.

Zhijiang, X. (2023). Chinese rice farming trials cut methane emissions. China Dialogue. Available at: https://chinadialogue.net/en/food/chinas-rice-farming-trials-cut-methane-emissions-and- increase-yields/ [accessed July 2023].