SECTION C — CHEMISTRY; METALLURGY

C07 ORGANIC CHEMISTRY

C07C ACYCLIC OR CARBOCYCLIC COMPOUNDS (macromolecular compounds C08; production of organic compounds by electrolysis or electrophoresis C25B 3/00, C25B 7/00)

Note(s) [3, 5, 7, 2006.01]

- In this subclass, the following terms or expressions are used with the meanings indicated:
 - "bridged" means the presence of at least one fusion other than ortho, peri or spiro;
 - two rings are "condensed" if they share at least one ring member, i.e. "spiro" and "bridged" are considered as condensed;
 - "condensed ring system" is a ring system in which all rings are condensed among themselves;
 - "number of rings" in a condensed ring system equals the number of scissions necessary to convert the ring system into one acyclic chain;
 - "quinones" are compounds derived from compounds containing a six-membered aromatic ring or a system comprising sixmembered aromatic rings (which system may be condensed or not condensed) by replacing two or four CH groups of the sixmembered aromatic rings by C=O groups, and by removing one or two carbon-to-carbon double bonds, respectively, and rearranging the remaining carbon-to-carbon double bonds to give a ring or ring system with alternating double bonds, including the carbon-to-oxygen bonds; this means that acenaphthenequinone or camphorquinone are not considered as quinones.
- Attention is drawn to Note (3) after class C07, which defines the last place priority rule applied in the range of subclasses C07C-C07K and within these subclasses.
- Therapeutic activity of compounds is further classified in subclass A61P. 3.
- When classifying in this subclass, classification is also made in group B01D 15/08 insofar as subject matter of general interest relating to 4. chromatography is concerned.
- In this subclass, the last place priority rule is applied, i.e. at each hierarchical level, in the absence of an indication to the contrary, a 5. process is classified in the last appropriate place.
- In this subclass, in the absence of an indication to the contrary, "quaternary ammonium compounds" are classified with the corresponding "non-quaternised nitrogen compounds".
- For the classification of compounds in groups C07C 1/00-C07C 71/00 and C07C 401/00-C07C 409/00: 7.
 - a compound is classified considering the molecule as a whole (rule of the "whole molecule approach");
 - a compound is considered to be saturated if it does not contain carbon atoms bound to each other by multiple bonds;
 - a compound is considered to be unsaturated if it contains carbon atoms bound to each other by multiple bonds, which includes a sixmembered aromatic ring,

unless otherwise specified or implicitly derivable from the subdivision, as in group C07C 69/00, e.g. C07C 69/712.

- For the classification of compounds in groups C07C 201/00-C07C 395/00, i.e. after the functional group has been determined according to the "last place rule", a compound is classified according to the following principles:
 - compounds are classified in accordance with the nature of the carbon atom to which the functional group is attached;
 - a carbon skeleton is a carbon atom, other than a carbon atom of a carboxyl group, or a chain of carbon atoms bound to each other; a carbon skeleton is considered to be terminated by every bond to an element other than carbon or to a carbon atom of a carboxyl
 - when the molecule contains several functional groups, only functional groups linked to the same carbon skeleton as the one first determined are considered:
 - a carbon skeleton is considered to be saturated if it does not contain carbon atoms bound to each other by multiple bonds;
 - a carbon skeleton is considered to be unsaturated if it contains carbon atoms bound to each other by multiple bonds, which includes a six-membered aromatic ring.

Subclass index

COMPOUNDS CONTAINING CARBON AND HYDROGEN ONLY Compounds aliphatic 0/00 11/00

CO

anphauc	9/00, 11/00
cycloaliphatic, aromatic	13/00, 15/00
OMPOUNDS CONTAINING CARBON AND HALOGENS, WITH OR WITHOUT HYDROGEN	
Preparation	17/00
Compounds	
aliphatic	19/00, 21/00
cycloaliphatic, aromatic	22/00, 23/00, 25/00

COMPOUNDS CONTAINING CARBON AND OXYGEN, WITH OR WITHOUT HYDROGEN OR HALOGENS

Preparation	
simultaneous production of more than one class of oxygen- containing compounds	27/00
of alcohols; of phenols	
-	
of ethers or acetals; of oxo compounds	
of quinones	
of carboxylic acids, their salts or anhydrides	
of esters of carboxylic acids	
of esters of carbonic or haloformic acids	68/00
Compounds	24 (02 22 (02
with OH group(s): aliphatically bound	
cycloaliphatically bound	
with OH group(s) aromatically bound	
Ethers, acetals, orthoesters; aldehydes; ketones	43/00, 47/00, 49/00
Quinones	50/00
carboxylic acids	
acyclic	53/00, 55/00, 57/00, 59/00
cyclic	61/00, 62/00, 63/00, 65/00, 66/00
Esters	69/00, 71/00
OMPOUNDS CONTAINING CARBON AND NITROGEN, WITH OR WITHOUT HYDROG ALOGENS, OR OXYGEN Preparation	GEN,
of amines	209/00
of hydroxy amines, aminoethers, or aminoesters	213/00
of aminoaldehydes, aminoketones, aminoquinones	
of aminocarboxylic acids	
of amides of carboxylic acids	
of nitriles of carboxylic acids	
of derivatives of hydrazine	
•	
of compounds containing carbon- to-nitrogen double bonds, e.g. imines, hydrazones, iso	
of derivatives of carbamic acids	
of urea or derivatives	
of guanidines or derivatives	
of nitro or nitroso compounds, or esters of nitric or nitrous acids	201/00
having nitrogen bound to carbon or to carbon and hydrogen	
Amines	211/00
Hydroxy amines; Aminoethers; Aminoesters	215/00, 217/00, 219/00
Aminoaldehydes, aminoketones, aminoquinones	223/00, 225/00
Amino carboxylic acids	229/00
Amides of carboxylic acids	233/00, 235/00, 237/00
Compounds containing one or more carbon-to-nitrogen double bonds, e.g. imines	
Nitriles of carboxylic acids	255/00
Nitriles of carboxylic acids	
Amidines, imino-ethers	257/00
Amidines, imino-ethers	257/00 259/00
Amidines, imino-ethers	257/00 259/00 261/00, 265/00
Amidines, imino-ethers Hydroxamic acids Derivatives of cyanic or isocyanic acid Carbodiimides	257/00 259/00 261/00, 265/00 267/00
Amidines, imino-ethers Hydroxamic acids Derivatives of cyanic or isocyanic acid Carbodiimides Carbamic acids	
Amidines, imino-ethers Hydroxamic acids Derivatives of cyanic or isocyanic acid Carbodiimides Carbamic acids Ureas	
Amidines, imino-ethers Hydroxamic acids Derivatives of cyanic or isocyanic acid Carbodiimides Carbamic acids Ureas Guanidines	
Amidines, imino-ethers Hydroxamic acids Derivatives of cyanic or isocyanic acid Carbodiimides Carbamic acids Ureas Guanidines having nitrogen bound to halogens	
Amidines, imino-ethers Hydroxamic acids Derivatives of cyanic or isocyanic acid Carbodiimides Carbamic acids Ureas Guanidines having nitrogen bound to halogens having nitrogen bound to oxygen	
Amidines, imino-ethers Hydroxamic acids Derivatives of cyanic or isocyanic acid Carbodiimides Carbamic acids Ureas Guanidines having nitrogen bound to halogens	
Amidines, imino-ethers Hydroxamic acids Derivatives of cyanic or isocyanic acid Carbodiimides Carbamic acids Ureas Guanidines having nitrogen bound to halogens having nitrogen bound to oxygen	
Amidines, imino-ethers Hydroxamic acids Derivatives of cyanic or isocyanic acid Carbodiimides Carbamic acids Ureas Guanidines having nitrogen bound to halogens having nitrogen bound to oxygen Nitro or nitroso compounds	
Amidines, imino-ethers Hydroxamic acids Derivatives of cyanic or isocyanic acid Carbodiimides Carbamic acids Ureas Guanidines having nitrogen bound to halogens having nitrogen bound to oxygen Nitro or nitroso compounds Nitrites or nitrates Hydroxylamines	
Amidines, imino-ethers Hydroxamic acids Derivatives of cyanic or isocyanic acid Carbodiimides Carbamic acids Ureas Guanidines having nitrogen bound to halogens having nitrogen bound to oxygen Nitro or nitroso compounds Nitrites or nitrates Hydroxylamines Oximes	
Amidines, imino-ethers Hydroxamic acids Derivatives of cyanic or isocyanic acid Carbodiimides Carbamic acids Ureas Guanidines having nitrogen bound to halogens having nitrogen bound to oxygen Nitro or nitroso compounds Nitrites or nitrates Hydroxylamines	

Azo compounds, diazo compounds	245/00
Hydrazones, hydrazidines	251/00, 257/00
Semicarbazones	281/00
N-nitro or N-nitroso compounds	243/00
containing chains of three nitrogen atoms bound together	
Triazenes	245/00
Azides	247/00
Other compounds containing nitrogen	291/00
COMPOUNDS CONTAINING CARBON, TOGETHER WITH SULFUR, SELENIUM, OR	
TELLURIUM, WITH OR WITHOUT HYDROGEN, HALOGENS, OXYGEN, OR NITROGEN	
Preparation	202/00
of derivatives of sulfuric or sulfonic acids	
of mercaptans, thiophenols, sulfides, or polysulfides	
of sulfones or sulfoxides	315/00
having sulfur bound to oxygen	
Esters of sulfurous or sulfuric acids	301/00 305/00
Sulfonic acids or derivatives.	
Sulfenic or sulfinic acids or derivatives	
Sulfones, sulfoxides	
having sulfur bound to carbon	517/00
Mercaptans, thiophenols, sulfides or polysulfides	321/00 323/00
Thioaldehydes, thioketones	
Thiocarboxylic acids or derivatives.	
Thiocarboxylic acids or derivatives	
Thiocyanates, isothiocyanates	
Thiocyanates, isothocyanates	
Thioureas	
Thiosemicarbazides or thiosemicarbazones	
having sulfur bound to nitrogen	337700
Sulfonamides	311/00
Sulfenamides, sulfinamides, sulfenylcarbamates or sulfenylureas	
Amides of sulfuric acids	
Other compounds containing sulfur.	
Compounds containing selenium	
Compounds containing selement	
IRRADIATION PRODUCTS OF CHOLESTEROL	
DERIVATIVES OF CYCLOHEXANE OR OF A CYCLOHEXENE HAVING AN UNSATURATED SIDI	
CHAIN WITH AT LEAST FOUR CARBON ATOMS	
PROSTAGLANDINS OR DERIVATIVES	405/00
PEROXIDES; PEROXYACIDS Preparation	407/00
Compounds	
•	

Hydrocarbons [3]

1/00	Preparation of hydrocarbons from one or more
	compounds, none of them being a
	hydrocarbon [1, 2006.01]

- from oxides of carbon (preparation of liquid hydrocarbon mixtures of undefined composition C10G 2/00; of synthetic natural gas C10L 3/06) [1, 5, 2006.01]
- 1/04 from carbon monoxide with hydrogen [1, 2006.01]
- 1/06 • in the presence of organic compounds, e.g. hydrocarbons [1, 2006.01]
- 1/08 • Isosyntheses [1, 2006.01]
- 1/10 • from carbon monoxide with water vapour [1, 2006.01]
- 1/12 from carbon dioxide with hydrogen [1, 2006.01]

- starting from organic compounds containing only oxygen atoms as hetero atoms [1, 2006.01]
- 1/207 • from carbonyl compounds **[5, 2006.01]**
- 1/213 • by splitting of esters **[5, 2006.01]**
- 1/22 • by reduction **[1, 2006.01]**
- 1/24 • by elimination of water **[1, 2006.01]**
- 1/247 • by splitting of cyclic ethers **[3, 2006.01]**
- 1/26 starting from organic compounds containing only halogen atoms as hetero atoms [1, 2006.01]
- 1/28 • by ring closure **[1, 2006.01]**
- 1/30 • by splitting-off the elements of hydrogen halide from a single molecule **[1, 2006.01]**
- 1/32 starting from compounds containing hetero atoms other than, or in addition to, oxygen or halogen [3, 2006.01]

3

1/34	 reacting phosphines with aldehydes or ketones, e.g. Wittig reaction [3, 2006.01] 	2/72	 Addition to a non-aromatic carbon atom of hydrocarbons containing a six-membered aromatic
1/36	• by splitting of esters (C07C 1/213, C07C 1/30 take		ring [3, 2006.01]
1/50	precedence) [3, 5, 2006.01]	2/74	by addition with simultaneous
	precedence) [6, 6, 2000/02]	=//.	hydrogenation [3, 2006.01]
2/00	Preparation of hydrocarbons from hydrocarbons	2/76	 by condensation of hydrocarbons with partial
	containing a smaller number of carbon		elimination of hydrogen [3, 2006.01]
	atoms [3, 2006.01]	2/78	• • Processes with partial combustion [3, 2006.01]
2/02	by addition between unsaturated	2/80	 Processes with the aid of electrical
2/04	hydrocarbons [3, 2006.01]		means [3, 2006.01]
2/04	 by oligomerisation of well-defined unsaturated hydrocarbons without ring formation [3, 2006.01] 	2/82	 oxidative coupling [3, 2006.01]
2/06	· · · · · · · · · · · · · · · · · · ·	2/84	• • • catalytic [3, 2006.01]
2/06	of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double	2/86	 by condensation between a hydrocarbon and a non-
	bond [3, 2006.01]		hydrocarbon [3, 2006.01]
2/08	• • • • Catalytic processes [3, 2006.01]	2/88	• • Growth and elimination reactions [3, 2006.01]
2/10	• • • • with metal oxides [3, 2006.01]	4/00	Drangwation of hydrocarbane from hydrocarbane
2/12	• • • • with crystalline alumino-silicates, e.g.	4/00	Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon
_,	molecular sieves [3, 2006.01]		atoms [3, 2006.01]
2/14	• • • • with inorganic acids; with salts or	4/02	 by cracking a single hydrocarbon or a mixture of
	anhydrides of acids [3, 2006.01]	., 02	individually defined hydrocarbons or a normally
2/16	• • • • • Acids of sulfur; Salts thereof; Sulfur		gaseous hydrocarbon fraction [3, 2006.01]
	oxides [3, 2006.01]	4/04	 Thermal processes [3, 2006.01]
2/18	 • • • • • Acids of phosphorus; Salts thereof; 	4/06	 Catalytic processes [3, 2006.01]
	Phosphorus oxides [3, 2006.01]	4/08	 by splitting-off an aliphatic or cycloaliphatic part
2/20	• • • • • Acids of halogen; Salts		from the molecule [3, 2006.01]
	thereof [3, 2006.01]	4/10	 from acyclic hydrocarbons [3, 2006.01]
2/22	• • • • • Metal halides; Complexes thereof	4/12	 from hydrocarbons containing a six-membered
	with organic		aromatic ring, e.g. propyltoluene to
0./0.4	compounds [3, 2006.01]		vinyltoluene [3, 2006.01]
2/24	• • • • with metals [3, 2006.01]	4/14	 splitting taking place at an aromatic-aliphatic
2/26	• • • • with hydrides or organic compounds		bond [3, 2006.01]
	(C07C 2/22 takes precedence) [3, 2006.01]	4/16	• • • Thermal processes [3, 2006.01]
2/28	• • • • • with ion-exchange resins [3, 2006.01]	4/18	• • • Catalytic processes [3, 2006.01]
2/30	• • • • • containing a metal-to-carbon bond;	4/20	• • • Hydrogen being formed <u>in situ</u> , e.g. from
2/30	Metal hydrides [3, 2006.01]	4/00	steam [3, 2006.01]
2/32	• • • • • as complexes, e.g. acetyl-	4/22	• by depolymerisation to the original monomer, e.g.
_,	acetonates [3, 2006.01]	4/24	dicyclopentadiene to cyclopentadiene [3, 2006.01]by splitting polyarylsubstituted aliphatic compounds
2/34	• • • • • Metal-hydrocarbon	4/24	at an aliphatic-aliphatic bond, e.g. 1,4-diphenylbutane
	complexes [3, 2006.01]		to styrene [3, 2006.01]
2/36	 • • • • as phosphines, arsines, stilbines or 	4/26	 by splitting polyaryl compounds at a bond between
	bismuthines [3, 2006.01]		uncondensed six-membered aromatic rings, e.g.
2/38	 • of dienes or alkynes [3, 2006.01] 		biphenyl to benzene [3, 2006.01]
2/40	• • • of conjugated dienes [3, 2006.01]		
2/42	 homo- or co-oligomerisation with ring formation, 	5/00	Preparation of hydrocarbons from hydrocarbons
	not being a Diels-Alder conversion [3, 2006.01]		containing the same number of carbon atoms [1, 2006.01]
2/44	• • of conjugated dienes only [3, 2006.01]	5/02	
2/46	• • • Catalytic processes [3, 2006.01]	5/02	by hydrogenation [1, 2006.01]of non-aromatic carbon-to-carbon double
2/48	 of only hydrocarbons containing a carbon-to- 	5/05	bonds [3, 2006.01]
	carbon triple bond [3, 2006.01]	5/05	 Partial hydrogenation [3, 2006.01]
2/50	• • Diels-Alder conversion [3, 2006.01]	5/08	 of carbon-to-carbon triple bonds [1, 2006.01]
2/52	• • Catalytic processes [3, 2006.01]	5/09	• • to carbon-to-carbon double bonds [3, 2006.01]
2/54	by addition of unsaturated hydrocarbons to saturated	5/10	 of aromatic six-membered rings [1, 2006.01]
	hydrocarbons, or to hydrocarbons containing a six-	5/11	• • • Partial hydrogenation [3, 2006.01]
	membered aromatic ring with no unsaturation outside		• • with simultaneous isomerisation [3, 2006.01]
2/56	the aromatic ring [3, 2006.01] • Addition to acyclic hydrocarbons [3, 2006.01]	5/13 5/22	with simultaneous isomerisation [3, 2006.01]by isomerisation (with simultaneous hydrogenation
2/58	Addition to acyclic hydrocaroons [3, 2006.01]Catalytic processes [3, 2006.01]	3/22	C07C 5/13) [1, 2006.01]
2/50	• • • • with halides [3, 2006.01]	5/23	Rearrangement of carbon-to-carbon unsaturated
2/62	• • • • with acids [3, 2006.01]	5,25	bonds [3, 2006.01]
2/62	Addition to a carbon atom of a six-membered	5/25	• • Migration of carbon-to-carbon double
Z/ U4	aromatic ring [3, 2006.01]		bonds [3, 2006.01]
2/66	• • • Catalytic processes [3, 2006.01]	5/27	Rearrangement of carbon atoms in the
2/68	• • • • with halides [3, 2006.01]		hydrocarbon skeleton [3, 2006.01]
2/70	• • • • with acids [3, 2006.01]		
_, , 0			

5/29	 changing the number of carbon atoms in a ring while maintaining the number of 	7/00	Purification, separation or stabilisation hydrocarbons; Use of additives [1, 5,
	rings [3, 2006.01]	7/04	• by distillation [1, 3, 2006.01]
5/31	• • changing the number of rings [3, 2006.01]	7/05	• • with the aid of auxiliary compoun
5/32	 by dehydrogenation with formation of free 	7/06	• • • by azeotropic distillation [1, 20
	hydrogen [2, 2006.01]	7/08	• • • by extractive distillation [1, 20
5/327	Formation of non-aromatic carbon-to-carbon	7/09	• by fractional condensation [3, 2006.0
5/333	double bonds only [3, 2006.01] • • • Catalytic processes [3, 2006.01]	7/10	• by extraction, i.e. purification or sep- hydrocarbons with the aid of liquids
5/35	 Formation of carbon-to-carbon triple bonds only [3, 2006.01] 	7/11	 by absorption, i.e. purification or sep gaseous hydrocarbons with the aid o
5/367	Formation of an aromatic six-membered ring from		liquids [3, 2006.01]
	an existing six-membered ring, e.g. dehydrogenation of ethylcyclohexane to ethylbenzene [3, 2006.01]	7/12	 by adsorption, i.e. purification or sep hydrocarbons with the aid of solids, exchangers [1, 3, 2006.01]
5/373	• • with simultaneous isomerisation [3, 2006.01]	7/13	 by molecular-sieve technique [2, 3]
5/387	 of cyclic compounds containing no six- 	7/135	 by gas-chromatography [3, 2006.01]
	membered ring to compounds containing a six-membered aromatic ring [3, 2006.01]	7/14	 by crystallisation; Purification or sep crystals [1, 3, 2006.01]
5/393	 • with cyclisation to an aromatic six-membered ring, e.g. dehydrogenation of n-hexane to benzene [3, 2006.01] 	7/144	• using membranes, e.g. selective permeation [3, 2006.01]
F / / 1		7/148	• by treatment giving rise to a chemica
5/41	• • • Catalytic processes [3, 2006.01]		at least one compound [3, 2006.01]
5/42	 by dehydrogenation with a hydrogen acceptor [2, 2006.01] 	7/152	• • by forming adducts or complexes
	acceptor [2, 2000.01]	7/156	• • • with solutions of copper salts [
	<u>Note(s) [3]</u>	7/163	• • by hydrogenation [3, 2006.01]
	1. In this group:	7/167	• • • for removal of compounds con
	the catalyst is considered as forming part of		carbon-to-carbon bond [3, 200]

- the catalyst is considered as forming part of the acceptor system in case of simultaneous catalyst reduction;
- compounds added for binding the reduced acceptor system are not considered as belonging to the acceptor system.
- The acceptor system is classified according to the 2 supplying substances in case of in situ formation of the acceptor system or of in situ regeneration of the reduced acceptor system.
- 5/44 with a halogen or a halogen-containing compound as an acceptor [2, 2006.01]
- 5/46 with sulfur or a sulfur-containing compound as an acceptor [2, 2006.01]
- 5/48 with oxygen as an acceptor [2, 2006.01]
- 5/50 with an organic compound as an acceptor [2, 2006.01]
- with a hydrocarbon as an acceptor, e.g. 5/52 hydrocarbon disproportionation, i.e. $2 C_n H_p \rightarrow$ $C_nH_{p+q} + C_nH_{p-q}$ [2, 2006.01]
- 5/54 with an acceptor system containing at least two compounds provided for in more than one of groups C07C 5/44-C07C 5/50 [3, 2006.01]
- 5/56 containing only oxygen and either halogens or halogen-containing compounds [3, 2006.01]

6/00 Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions [3, 2006.01]

- 6/02 Metathesis reactions at an unsaturated carbon-tocarbon bond [3, 2006.01]
- 6/04 at a carbon-to-carbon double bond [3, 2006.01]
- 6/06 at a cyclic carbon-to-carbon double bond [3, 2006.01]
- 6/08 by conversion at a saturated carbon-to-carbon bond [3, 2006.01]
- in hydrocarbons containing no six-membered 6/10 aromatic rings [3, 2006.01]
- of exclusively hydrocarbons containing a six-6/12 membered aromatic ring [3, 2006.01]

tion of , 2006.01]

- nds [3, 2006.01]
- 2006.01]
- 2006.01]
- 5.01]
- paration of liquid ls [1, 3, 2006.01]
- paration of of
- paration of , e.g. with ion-
- 3, 2006.01]
- paration of the
- cal modification of
- es [3, 2006.01]
- [3, 2006.01]
- ntaining a triple carbon-to-carbon bond [3, 2006.01]
- 7/17 with acids or sulfur oxides [3, 2006.01]
- Sulfuric acid or oleum [7, 2006.01] 7/171
- with the aid of organo-metallic 7/173 compounds [3, 2006.01]
- by selective oligomerisation or selective 7/177 polymerisation of at least one compound of the mixture [3, 2006.01]
- 7/20 • Use of additives, e.g. for stabilisation [3, 2006.01]

Acyclic saturated hydrocarbons [1, 2006.01] 9/00

- 9/02 • with one to four carbon atoms [1, 5, 2006.01]
- 9/04 Methane (production by treatment of sewage C02F 11/04) [1, 5, 2006.01]
- 9/06 Ethane [1, 2006.01]
- 9/08 Propane [1, 2006.01]
- with four carbon atoms [1, 5, 2006.01] 9/10
- 9/12 Iso-butane [1, 2006.01]
- 9/14 with five to fifteen carbon atoms [1, 2006.01]
- 9/15 Straight-chain hydrocarbons [3, 2006.01]
- Branched-chain hydrocarbons [1, 2006.01] 9/16
- 9/18 with five carbon atoms [1, 5, 2006.01]
- 9/21 • 2,2,4-Trimethylpentane [3, 2006.01]
- 9/22 • with more than fifteen carbon atoms [1, 2006.01]

11/00 Acyclic unsaturated hydrocarbons [1, 2006.01]

- 11/02 Alkenes [1, 2006.01]
- 11/04 Ethene [1, 2006.01]
- Propene [1, 2006.01] 11/06
- 11/08 with four carbon atoms [1, 5, 2006.01]
- 11/09 Isobutene [3, 2006.01]
- 11/10 with five carbon atoms [1, 5, 2006.01]
- 11/107 with six carbon atoms [5, 2006.01]
- Methylpentenes [3, 2006.01] 11/113
- 11/12 Alkadienes [1, 2006.01]
- Allene [1, 2006.01] 11/14
- with four carbon atoms [1, 2006.01] 11/16
- 11/167 • • 1,3-Butadiene [3, 2006.01]

11/173	• • with five carbon atoms [3, 2006.01]	13/44 • • • with a bicyclo ring system containing eight
11/18	• • • Isoprene [1, 3, 2006.01]	carbon atoms [1, 2006.01]
11/20	• • 1,3-Pentadiene [1, 3, 2006.01]	13/45 • • • with a bicyclo ring system containing nine carbon atoms [3, 2006.01]
11/21	• Alkatrienes; Alkatetraenes; Other alkapolyenes [2, 3, 2006.01]	13/465 • • • Indenes; Completely or partially
11/22	• containing carbon-to-carbon triple bonds [1, 2006.01]	hydrogenated indenes [3, 2006.01]
11/24	 Acetylene (production of acetylene gas by wet 	13/47 • • • with a bicyclo ring system containing ten
	methods C10H) [1, 5, 2006.01]	carbon atoms [3, 2006.01] 13/48 • • • • Completely or partially hydrogenated
11/28	containing carbon-to-carbon double bonds and carbon to carbon triple bonds [1, 2006 01]	naphthalenes [1, 3, 2006.01]
11/30	carbon-to-carbon triple bonds [1, 2006.01] • Butenyne [1, 2006.01]	13/50 • • • • Decahydronaphthalenes [1, 3, 2006.01]
		13/52 • • • Azulenes; Completely or partially
13/00	Cyclic hydrocarbons containing rings other than, or	hydrogenated azulenes [1, 3, 2006.01]
	in addition to, six-membered aromatic rings [1, 2006.01]	13/54 • • • with three condensed rings [1, 2006.01] 13/547 • • • at least one ring not being six-membered, the
13/02	Monocyclic hydrocarbons or acyclic hydrocarbon	13/547 • • • at least one ring not being six-membered, the other rings being at the most six-
	derivatives thereof [1, 2006.01]	membered [3, 2006.01]
13/04	• • with a three-membered ring [1, 2006.01]	13/553 • • • • Indacenes; Completely or partially
13/06	• • with a four-membered ring [1, 2006.01]	hydrogenated indacenes [3, 2006.01]
13/08 13/10	with a five-membered ring [1, 2006.01]with a cyclopentane ring [1, 2006.01]	13/567 • • • • • Fluorenes; Completely or partially hydrogenated fluorenes [3, 2006.01]
13/10	• • • substituted by unsaturated hydrocarbon	13/573 • • • • with three six-membered rings [3, 2006.01]
15/11	groups [2, 2006.01]	13/58 • • • • Completely or partially hydrogenated
13/12	• • • with a cyclopentene ring [1, 2006.01]	anthracenes [1, 3, 2006.01]
13/15	• • with a cyclopentadiene ring [3, 2006.01]	13/60 • • • • • Completely or partially hydrogenated
13/16	• • with a six-membered ring [1, 2006.01]	phenanthrenes [1, 3, 2006.01] 13/605 • • • • with a bridged ring system [3, 2006.01]
13/18	• • • with a cyclohexane ring [1, 2006.01]	13/61 • • • • Bridged indenes, e.g.
13/19	• • • substituted by unsaturated hydrocarbon groups [2, 2006.01]	dicyclopentadiene [3, 2006.01]
13/20	• • • with a cyclohexene ring [1, 2006.01]	13/615 • • • • Adamantanes [3, 2006.01]
13/21	• • • • Menthadienes [2, 2006.01]	13/62 • • • with more than three condensed
13/23	• • with a cyclohexadiene ring [3, 2006.01]	rings [1, 2006.01]
13/24	• • with a seven-membered ring [1, 2006.01]	13/64 • • • with a bridged ring system [3, 2006.01] 13/66 • • • the condensed ring system contains only
13/26	• • with an eight-membered ring [1, 2006.01]	four rings [3, 2006.01]
13/263	• • with a cyclo-octene or cyclo-octadiene ring [3, 2006.01]	13/68 • • • • with a bridged ring system [3, 2006.01]
13/267	• • with a cyclo-octatriene or cyclo-octatetraene	13/70 • • • with a condensed ring system consisting of at
	ring [3, 2006.01]	least two mutually uncondensed aromatic ring systems, linked by an annular structure formed
	• • with a nine- to eleven-membered ring [3, 2006.01]	by carbon chains on non-adjacent positions of
	• • with a twelve-membered ring [3, 2006.01]	the aromatic ring, e.g. cyclophanes [3, 2006.01]
13/275	• • • the twelve-membered ring being unsaturated [3, 2006.01]	13/72 • • • Spiro hydrocarbons [3, 2006.01]
13/277	• • • with a cyclododecatriene ring [3, 2006.01]	15/00 Cyclic hydrocarbons containing only six-membered
13/28	Polycyclic hydrocarbons or acyclic hydrocarbon	aromatic rings as cyclic part [1, 2, 2006.01]
	derivatives thereof [1, 2006.01]	15/02 • Monocyclic hydrocarbons [1, 2006.01]
	Note(s) [3]	15/04 • • Benzene [1, 2006.01]
	Ring systems consisting only of condensed six-	15/06 • • Toluene [1, 2006.01]
	membered rings with maximum number of non-	15/067 • • C ₈ H ₁₀ hydrocarbons [3, 2006.01]
	cumulative double bonds are classified in group	15/073 • • • Ethylbenzene [3, 2006.01] 15/08 • • • Xylenes [1, 3, 2006.01]
40.00	C07C 15/00.	15/085 • • Isopropylbenzene [3, 2006.01]
13/32	• • with condensed rings [1, 2006.01]	15/107 • having a saturated side-chain containing at least
13/34	• • with a bicyclo ring system containing four carbon atoms [1, 2006.01]	six carbon atoms, e.g. detergent
13/36	• • with a bicyclo ring system containing five	alkylates [3, 2006.01]
	carbon atoms [1, 2006.01]	15/113 • • • having at least two saturated side-chains, each containing at least six carbon
13/38	• • • with a bicyclo ring system containing six	atoms [3, 2006.01]
13/39	carbon atoms [1, 2006.01]with a bicyclo ring system containing seven	15/12 • Polycyclic non-condensed hydrocarbons [1, 2006.01]
13/39	carbon atoms [3, 2006.01]	15/14 • • all phenyl groups being directly
13/40	• • • with a bicycloheptane ring	linked [1, 3, 2006.01]
	structure [1, 3, 2006.01]	 15/16 • containing at least two phenyl groups linked by one single acyclic carbon atom [1, 2006.01]
13/42	• • • • with a bicycloheptene ring	15/18 • • containing at least one group with formula
13/43	structure [1, 3, 2006.01] • • • • substituted by unsaturated acyclic	C−C−C [1, 2006.01]
10/40	hydrocarbon groups [3, 2006.01]	15/20 • Polycyclic condensed hydrocarbons [1, 2006.01]
		10, 20 1 orycychic condensed nydrocarbons [1, 2000.01]

15/24	• • containing two rings [1, 2006.01]	17/26	• by reactions involving an increase in the number of
15/27	• containing three rings [3, 2006.01]		carbon atoms in the skeleton [1, 2006.01]
15/28	• • • Anthracenes [1, 3, 2006.01]	17/263	• • by condensation reactions [6, 2006.01]
15/30	• • • Phenanthrenes [1, 3, 2006.01]	17/266	• • • of hydrocarbons and halogenated
15/38	 containing four rings [3, 2006.01] 	17/200	hydrocarbons [6, 2006.01]
15/40	substituted by unsaturated hydrocarbon	17/269	• • of only halogenated hydrocarbons [6, 2006.01]
45/40	radicals [3, 2006.01]	17/272	• by addition reactions [6, 2006.01]
15/42	• • monocyclic [3, 2006.01]	17/275	 • of hydrocarbons and halogenated hydrocarbons [6, 2006.01]
15/44	• • • the hydrocarbon substituent containing a	17/278	• • of only halogenated hydrocarbons [6, 2006.01]
1F / AC	carbon-to-carbon double bond [3, 2006.01]	17/281	• • • of only one compound [6, 2006.01]
15/46	• • • Styrene; Ring-alkylated styrenes [3, 2006.01]	17/201	• by a Diels-Alder synthesis [1, 2006.01]
15/48	• • the hydrocarbon substituent containing a	17/32	 by a Dicis-Maci syndrosis [1, 2000.1] by introduction of halogenated alkyl groups into
157 40	carbon-to-carbon triple bond [3, 2006.01]	17752	ring compounds [1, 2006.01]
15/50	• • polycyclic non-condensed [3, 2006.01]	17/35	by reactions not affecting the number of carbon or
			halogen atoms in the molecules [6, 2006.01]
15/52	• • • containing a group with formula -C=C-	17/354	• • by hydrogenation [6, 2006.01]
	ig, 2006.01] • • containing a group with formula C-C≡C-C [3, 2006.01]	17/357	• • by dehydrogenation [6, 2006.01]
15/54	• • • containing a group with formula (△) - □ = □ - (△)	17/358	• • by isomerisation [6, 2006.01]
	[3, 2006.01]	17/361	• by reactions involving a decrease in the number of
15/56	• • polycyclic condensed [3, 2006.01]		carbon atoms [6, 2006.01]
15/58	• • • containing two rings [3, 2006.01]	17/363	• • by elimination of carboxyl groups [6, 2006.01]
15/60	 containing three rings [3, 2006.01] 	17/367	• • by depolymerisation [6, 2006.01]
15/62	• • containing four rings [3, 2006.01]	17/37	by disproportionation of halogenated
			hydrocarbons [6, 2006.01]
Compour	nds containing carbon and halogens with or without	17/38	• Separation; Purification; Stabilisation; Use of
hydrogen		17/202	additives [1, 2006.01]
<u>, a. oge</u>		17/383	• by distillation [6, 2006.01]
17/00	Preparation of halogenated	17/386	• • • with auxiliary compounds [6, 2006.01]
	hydrocarbons [1, 2006.01]	17/389 17/392	by adsorption on solids [6, 2006.01]by crystallisation; Purification or separation of the
17/007	• from carbon or carbides and halogens [6, 2006.01]	1//332	crystals [6, 2006.01]
17/013	• by addition of halogens [6, 2006.01]	17/395	 by treatment giving rise to a chemical
17/02	• • to unsaturated hydrocarbons [1, 6, 2006.01]	177555	modification of at least one
17/04	• to unsaturated halogenated		compound [6, 2006.01]
17/06	hydrocarbons [1, 6, 2006.01]	17/42	• • Use of additives, e.g. for
17/06	 combined with replacement of hydrogen atoms by halogens [1, 2006.01] 		stabilisation [1, 3, 6, 2006.01]
17/07	 by addition of hydrogen halides [6, 2006.01] 	19/00	A syelic saturated companyeds containing halogon
17/08	• to unsaturated hydrocarbons [1, 6, 2006.01]	19/00	Acyclic saturated compounds containing halogen atoms [1, 5, 2006.01]
17/087	• to unsaturated halogenated	19/01	• containing chlorine [6, 2006.01]
17,7007	hydrocarbons [6, 2006.01]	19/03	• Chloromethanes [6, 2006.01]
17/093	• by replacement by halogens [6, 2006.01]	19/04	• • Chloroform [1, 6, 2006.01]
17/10	of hydrogen atoms (combined with addition of	19/041	• • Carbon tetrachloride [6, 2006.01]
	halogens to unsaturated hydrocarbons	19/043	• • Chloroethanes [6, 2006.01]
	C07C 17/06) [1, 6, 2006.01]	19/045	• • Dichloroethanes [3, 6, 2006.01]
17/12	• • • in the ring of aromatic	19/05	• • Trichloroethanes [3, 6, 2006.01]
	compounds [1, 6, 2006.01]	19/055	• • • Tetrachloroethanes [3, 6, 2006.01]
17/14	• • • in the side-chain of aromatic	19/07	 containing iodine [2, 2006.01]
17/15	compounds [1, 6, 2006.01]	19/075	• containing bromine [6, 2006.01]
17/15	• with oxygen as auxiliary reagent, e.g.	19/08	• containing fluorine [1, 2006.01]
17/152	oxychlorination [2, 6, 2006.01] • • • of hydrocarbons [3, 6, 2006.01]	19/10	• • and chlorine [6, 2006.01]
17/154	• • • of saturated hydrocarbons [3, 6, 2006.01]	19/12	• • having two carbon atoms [6, 2006.01]
17/154	• • • of unsaturated hydrocarbons [3, 6, 2006.01]	19/14	• • and bromine [6, 2006.01]
17/158	• • • of halogenated hydrocarbons [3, 6, 2006.01]	19/16	• • and iodine [6, 2006.01]
17/136	• • of hydroxyl groups [1, 3, 6, 2006.01]		
17/18	 of oxygen atoms of carbonyl 	21/00	Acyclic unsaturated compounds containing halogen
		D4 /C5	atoms [1, 5, 2006.01]
1//10		.11 /02	 containing carbon-to-carbon double
	groups [1, 6, 2006.01]	21/02	
17/10	groups [1, 6, 2006.01] • of halogen atoms by other halogen		bonds [1, 2006.01]
	groups [1, 6, 2006.01]	21/04	bonds [1, 2006.01] - • Chloro-alkenes [1, 2006.01]
17/20	groups [1, 6, 2006.01] • of halogen atoms by other halogen atoms [1, 6, 2006.01]	21/04 21/06	 bonds [1, 2006.01] Chloro-alkenes [1, 2006.01] Vinyl chloride [1, 2006.01]
17/20	groups [1, 6, 2006.01] • of halogen atoms by other halogen atoms [1, 6, 2006.01] • with simultaneous increase of the number of	21/04 21/06 21/067	bonds [1, 2006.01] • Chloro-alkenes [1, 2006.01] • Vinyl chloride [1, 2006.01] • Allyl chloride; Methallyl chloride [3, 2006.01]
17/20 17/21	groups [1, 6, 2006.01] • of halogen atoms by other halogen atoms [1, 6, 2006.01] • with simultaneous increase of the number of halogen atoms [6, 2006.01] • by dehalogenation [6, 2006.01] • by splitting-off hydrogen halides from halogenated	21/04 21/06 21/067 21/073	bonds [1, 2006.01] • Chloro-alkenes [1, 2006.01] • Vinyl chloride [1, 2006.01] • Allyl chloride; Methallyl chloride [3, 2006.01] • Dichloro-alkenes [3, 2006.01]
17/20 17/21 17/23	groups [1, 6, 2006.01] • of halogen atoms by other halogen atoms [1, 6, 2006.01] • with simultaneous increase of the number of halogen atoms [6, 2006.01] • by dehalogenation [6, 2006.01]	21/04 21/06 21/067	bonds [1, 2006.01] • Chloro-alkenes [1, 2006.01] • Vinyl chloride [1, 2006.01] • Allyl chloride; Methallyl chloride [3, 2006.01]

21/09 21/10 21/12	 Dichloro-butenes [3, 2006.01] Trichloro-ethylene [1, 2006.01] Tetrachloro-ethylene [1, 2006.01] 	25/02 25/06	 Monocyclic aromatic halogenated hydrocarbons [1, 2006.01] Monochloro-benzene [1, 3, 2006.01]
21/14	• • containing bromine [1, 2006.01]	25/08	• Dichloro-benzenes [1, 3, 2006.01]
21/16	• • Crotyl bromide [1, 2006.01]	25/10	• Trichloro-benzenes [1, 3, 2006.01]
21/17	• containing iodine [5, 2006.01]	25/12	• • Hexachloro-benzene [1, 3, 2006.01]
21/18	• • containing fluorine [1, 2006.01]	25/125	• • Halogenated xylenes [2, 3, 2006.01]
21/185	• • Tetrafluoroethene [5, 2006.01]	25/13	• • containing fluorine [2, 3, 2006.01]
21/19	 Halogenated dienes [3, 2006.01] 	25/18	Polycyclic aromatic halogenated
21/20	• • • Halogenated butadienes [1, 3, 2006.01]		hydrocarbons [1, 2006.01]
21/21	• • • Chloroprene [3, 2006.01]	25/20	• • Dichloro-diphenyl-trichloro-ethane [1, 2006.01]
21/215	Halogenated polyenes with more than two carbon-	25/22	 with condensed rings [1, 2006.01]
21/22	to-carbon double bonds [3, 2006.01]	25/24	 Halogenated aromatic hydrocarbons with unsaturated side chains [1, 2006.01]
21/22	containing carbon-to-carbon triple bonds [1, 2006.01]	25/28	 Halogenated styrenes [1, 3, 2006.01]
22/00	Cyclic compounds containing halogen atoms bound to an acyclic carbon atom [5, 2006.01]		
22/02	 having unsaturation in the rings [5, 2006.01] 		nds containing carbon and oxygen, with or without
22/04	 containing six-membered aromatic 	<u>hydrogen</u>	or halogens [2]
22 / 26	rings [5, 2006.01]	27/00	Processes involving the simultaneous production of
22/06	• • Trichloromethylbenzene [5, 2006.01]		more than one class of oxygen-containing
22/08	• • containing fluorine [5, 2006.01]		compounds [1, 2006.01]
22/00	Company de contribir et la est una bala sen atom	27/02	• Saponification of organic acid esters [1, 2006.01]
23/00	Compounds containing at least one halogen atom bound to a ring other than a six-membered aromatic	27/04	 by reduction of oxygen-containing compounds
	ring [1, 2006.01]	27/06	(C07C 29/14 takes precedence) [1, 2006.01]
23/02	 Monocyclic halogenated hydrocarbons [1, 2006.01] 	27/06	• • by hydrogenation of oxides of carbon [1, 2006.01]
23/04	• • with a three-membered ring [1, 2006.01]	27/08	• • • with moving catalysts [1, 2006.01]
23/06	 with a four-membered ring [1, 2006.01] 	27/10	• by oxidation of hydrocarbons [1, 2006.01]
23/08	• • with a five-membered ring [1, 2006.01]	27/12	• • with oxygen [1, 2006.01]
23/10	• • with a six-membered ring [1, 2006.01]	27/14	• • • wholly gaseous reactions [1, 2006.01]
23/12	• • Hexachlorocyclohexanes [1, 2006.01]	27/16	 with other oxidising agents [1, 2006.01]
23/14	 with a seven-membered ring [1, 2006.01] 	27/18	by addition of alkynes to aldehydes, ketones, or
23/16	• • with an eight-membered ring [1, 2006.01]	a= /aa	alkylene oxides [1, 2006.01]
23/18	Polycyclic halogenated hydrocarbons [1, 2006.01]	27/20	• by oxo-reaction [1, 2006.01]
23/20	 with condensed rings none of which is aromatic [1, 2006.01] 	27/22	 with the use of catalysts which are specific for this process [1, 2006.01]
າວ / າ າ		27/24	• • with moving catalysts [1, 2006.01]
23/22	 • with a bicyclo ring system containing four carbon atoms [1, 2006.01] 	27/26	• Purification; Separation; Stabilisation [1, 2006.01]
23/24	• • • with a bicyclo ring system containing five	27/28	• • by distillation [1, 2006.01]
23/24	carbon atoms [1, 2006.01]	27/30	• • • by azeotropic distillation [1, 2006.01]
23/26	• • • with a bicyclo ring system containing six	27/32	• • • by extractive distillation [1, 2006.01]
23/20	carbon atoms [1, 2006.01]	27/34	• • by extraction [1, 2006.01]
23/27	• • with a bicyclo ring system containing seven	29/00	Dropovotion of compounds border budget or C
	carbon atoms [5, 2006.01]	29/00	Preparation of compounds having hydroxy or O- metal groups bound to a carbon atom not belonging
23/28	• • • Saturated bicyclo ring system [1, 5, 2006.01]		to a six-membered aromatic ring [1, 2006.01]
23/30	• • • • Mono-unsaturated bicyclo ring system [1, 5, 2006.01]	29/03	· by addition of hydroxy groups to unsaturated carbon-
23/32	• • • with a bicyclo ring system containing eight		to-carbon bonds, e.g. with the aid of H_2O_2 [3, 2006.01]
00/04	carbon atoms [1, 2006.01]	29/04	 by hydration of carbon-to-carbon double
23/34	 • • Halogenated completely or partially hydrogenated indenes [1, 2006.01] 		bonds [1, 2006.01]
23/36	• • • Halogenated completely or partially	29/05	• • with formation of absorption products in mineral acids and their hydrolysis [3, 2006.01]
00/55	hydrogenated naphthalenes [1, 2006.01]	29/06	• • • • the acid being sulfuric acid [1, 3, 2006.01]
23/38	• • • with three condensed rings [1, 2006.01]	29/08	• • • • the acid being phosphoric
23/40	 • • • Halogenated completely or partially hydrogenated fluorenes [1, 2006.01] 		acid [1, 3, 2006.01]
23/42	• • • Halogenated completely or partially	29/09	 by hydrolysis (of esters of organic acids C07C 27/02) [3, 2006.01]
22/44	hydrogenated anthracenes [1, 2006.01]	29/10	 of ethers, including cyclic ethers, e.g.
23/44	• • • • Halogenated completely or partially		oxiranes [1, 2006.01]
23/46	hydrogenated phenanthrenes [1, 2006.01] • • • with more than 3 condensed rings [1, 2006.01]	29/12	• • of esters of mineral acids [1, 3, 2006.01]
2J/40	with more than 5 condensed filigs [1, 2000.01]	29/124	• • • of halides [3, 2006.01]
25/00	Compounds containing at least one halogen atom bound to a six-membered aromatic ring [1, 2006.01]	29/128	 by alcoholysis (of esters of organic acids C07C 27/02) [3, 2006.01]

29/132	•	 by reduction of an oxygen-containing functional 	29/56	• by isomerisation [3, 2006.01]
		group [3, 2006.01]	29/58	• by elimination of halogen, e.g. by hydrogenolysis,
29/136	•	• • of C=O containing groups, e.g. —		splitting-off (C07C 29/124 takes
		COOH [3, 2006.01]		precedence) [3, 2006.01]
29/14		• • • of a —CHO group [1, 3, 2006.01]	29/60	• by elimination of hydroxy groups, e.g. by
29/141	•	• • • with hydrogen or hydrogen-containing		dehydration (C07C 29/34 takes
		gases [5, 2006.01]	20/62	precedence) [3, 2006.01]
		• • • of ketones [5, 2006.01]	29/62	 by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01]
29/145	•	• • • with hydrogen or hydrogen-containing	29/64	 by simultaneous introduction of hydroxy groups and
20 /1 47		gases [5, 2006.01]	23/04	halogens [3, 2006.01]
29/14/	•	 • of carboxylic acids or derivatives thereof [5, 2006.01] 	29/66	 by addition of hypohalogenous acids, which may
29/149		• • • with hydrogen or hydrogen-containing	25/00	be formed <u>in situ</u> , to carbon-to-carbon unsaturated
29/149	٠	gases [5, 2006.01]		bonds [3, 2006.01]
29/15		by reduction of oxides of carbon	29/68	 Preparation of metal-alcoholates (C07C 29/42,
23/13		exclusively [3, 2006.01]		C07C 29/54 take precedence) [3, 2006.01]
29/151		 with hydrogen or hydrogen-containing 	29/70	 by converting hydroxy groups to O-metal
		gases [5, 2006.01]		groups [3, 2006.01]
29/152	•	• • characterised by the reactor used [5, 2006.01]	29/72	 by oxidation of carbon-to-metal
29/153	•	• • characterised by the catalyst used [5, 2006.01]		bonds [3, 2006.01]
29/154	•	 containing copper, silver, gold, or 	29/74	• Separation; Purification; Stabilisation; Use of
		compounds thereof [5, 2006.01]	20./76	additives [3, 2006.01]
29/156	•	остания в острания, респисы	29/76	• • by physical treatment [3, 2006.01]
		group metals, or compounds	29/78	• • by condensation or crystallisation [3, 2006.01]
		thereof [5, 2006.01]	29/80	• • • by distillation [3, 2006.01]
29/157	•	• • • • containing platinum group metals or	29/82	• • • by azeotropic distillation [3, 2006.01]
20/150		compounds thereof [5, 2006.01]	29/84	• • • by extractive distillation [3, 2006.01]
29/158	•	 • • • • containing rhodium or compounds thereof [5, 2006.01] 	29/86	• • by liquid-liquid treatment [3, 2006.01]
29/159		 with reducing agents other than hydrogen or 	29/88	 by treatment giving rise to a chemical modification of at least one compound
23/133	·	hydrogen-containing gases [5, 2006.01]		(chemisorption C07C 29/76) [3, 2006.01]
29/16		 by oxo-reaction combined with 	29/90	• • using hydrogen only [3, 2006.01]
		reduction [1, 2006.01]	29/92	• • by a consecutive conversion and
29/17	•	 by hydrogenation of carbon-to-carbon double or 		reconstruction [3, 2006.01]
29/17	•	 by hydrogenation of carbon-to-carbon double or triple bonds [3, 2006.01] 	29/94	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01]
29/17 29/19				• Use of additives, e.g. for stabilisation [3, 2006.01]
		triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with	29/94 31/00	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal
29/19 29/20	•	 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] 	31/00	• • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01]
29/19	•	 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions 	31/00 31/02	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01]
29/19 29/20 29/32	•	 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] 	31/00 31/02 31/04	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01]
29/19 29/20	•	triple bonds [3, 2006.01] • in six-membered aromatic rings [3, 2006.01] • in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] • increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] • by condensation involving hydroxy groups or the	31/00 31/02 31/04 31/08	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01]
29/19 29/20 29/32	•	 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. 	31/00 31/02 31/04 31/08 31/10	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01]
29/19 29/20 29/32 29/34		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] 	31/00 31/02 31/04 31/08 31/10 31/12	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01]
29/19 29/20 29/32		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. 	31/00 31/02 31/04 31/08 31/10	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon
29/19 29/20 29/32 29/34		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions 	31/00 31/02 31/04 31/08 31/10 31/12 31/125	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon atoms [3, 2006.01]
29/19 29/20 29/32 29/34 29/36		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] 	31/00 31/02 31/04 31/08 31/10 31/12	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon
29/19 29/20 29/32 29/34 29/36		triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01]	31/00 31/02 31/04 31/08 31/10 31/12 31/125	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon atoms [3, 2006.01] Monohydroxylic alcohols containing saturated
29/19 29/20 29/32 29/34 29/36		triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal	31/00 31/02 31/04 31/08 31/10 31/12 31/125	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon atoms [3, 2006.01] Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/38 29/40		triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01]	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon atoms [3, 2006.01] Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] monocyclic [3, 2006.01]
29/19 29/20 29/32 29/34 29/36		triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01]	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon atoms [3, 2006.01] Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] monocyclic [3, 2006.01] with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] polycyclic with condensed ring
29/19 29/20 29/32 29/34 29/36 29/38 29/40		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metal- 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/133 31/135	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon atoms [3, 2006.01] Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] monocyclic [3, 2006.01] with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] polycyclic with condensed ring systems [3, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/36 29/40 29/42		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metal-alkynes [3, 2006.01] 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon atoms [3, 2006.01] Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] monocyclic [3, 2006.01] with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] polycyclic with condensed ring systems [3, 2006.01] Polyhydroxylic acyclic alcohols [1, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/38 29/40		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metalalkynes [3, 2006.01] increasing the number of carbon atoms by addition 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18 31/20	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon atoms [3, 2006.01] Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] monocyclic [3, 2006.01] with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] polycyclic with condensed ring systems [3, 2006.01] Polyhydroxylic acyclic alcohols [1, 2006.01] Dihydroxylic alcohols [1, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/36 29/40 29/42		triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] via with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metalalkynes [3, 2006.01] increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon atoms [3, 2006.01] Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] monocyclic [3, 2006.01] with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] polycyclic with condensed ring systems [3, 2006.01] Polyhydroxylic acyclic alcohols [1, 2006.01] Dihydroxylic alcohols [1, 2006.01] Trihydroxylic alcohols, e.g.
29/19 29/20 29/32 29/34 29/36 29/36 29/40 29/42		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metalalkynes [3, 2006.01] increasing the number of carbon atoms by addition 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18 31/20 31/22	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon atoms [3, 2006.01] Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] monocyclic [3, 2006.01] with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] polycyclic with condensed ring systems [3, 2006.01] Polyhydroxylic acyclic alcohols [1, 2006.01] Dihydroxylic alcohols [1, 2006.01] Trihydroxylic alcohols, e.g. glycerol [1, 3, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/36 29/40 29/42	• • • • • • •	 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metalalkynes [3, 2006.01] increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon double or triple bond (C07C 29/16 takes) 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18 31/20	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon atoms [3, 2006.01] Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] monocyclic [3, 2006.01] with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] polycyclic with condensed ring systems [3, 2006.01] polyhydroxylic acyclic alcohols [1, 2006.01] Dihydroxylic alcohols [1, 2006.01] Trihydroxylic alcohols, e.g. glycerol [1, 3, 2006.01] Tetrahydroxylic alcohols, e.g. Tetrahydroxylic alcohols, e.g.
29/19 29/20 29/32 29/34 29/36 29/38 29/40 29/42		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metalalkynes [3, 2006.01] increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon double or triple bond (C07C 29/16 takes precedence) [3, 2006.01] by diene-synthesis [3, 2006.01] by oxidation reactions with formation of hydroxy 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18 31/20 31/22 31/24	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon atoms [3, 2006.01] Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] monocyclic [3, 2006.01] with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] polycyclic with condensed ring systems [3, 2006.01] polyhydroxylic acyclic alcohols [1, 2006.01] Dihydroxylic alcohols [1, 2006.01] Trihydroxylic alcohols, e.g. glycerol [1, 3, 2006.01] Tetrahydroxylic alcohols, e.g. pentaerythritol [1, 3, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/38 29/40 29/42 29/44		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metalalkynes [3, 2006.01] increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon double or triple bond (C07C 29/16 takes precedence) [3, 2006.01] by diene-synthesis [3, 2006.01] by oxidation reactions with formation of hydroxy groups [3, 2006.01] 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18 31/20 31/22 31/24 31/26	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon atoms [3, 2006.01] Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] monocyclic [3, 2006.01] with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] polycyclic with condensed ring systems [3, 2006.01] polyhydroxylic acyclic alcohols [1, 2006.01] Dihydroxylic alcohols [1, 2006.01] Trihydroxylic alcohols, e.g. glycerol [1, 3, 2006.01] Tetrahydroxylic alcohols, e.g. pentaerythritol [1, 3, 2006.01] Hexahydroxylic alcohols [1, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/38 29/40 29/42 29/44 29/44 29/48 29/50		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metalalkynes [3, 2006.01] increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon double or triple bond (C07C 29/16 takes precedence) [3, 2006.01] by diene-synthesis [3, 2006.01] by oxidation reactions with formation of hydroxy groups [3, 2006.01] with molecular oxygen only [3, 2006.01] 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18 31/20 31/22 31/24	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon atoms [3, 2006.01] Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] monocyclic [3, 2006.01] with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] polycyclic with condensed ring systems [3, 2006.01] polyhydroxylic acyclic alcohols [1, 2006.01] Dihydroxylic alcohols [1, 2006.01] Trihydroxylic alcohols, e.g. glycerol [1, 3, 2006.01] Tetrahydroxylic alcohols, e.g. pentaerythritol [1, 3, 2006.01] Hexahydroxylic alcohols [1, 2006.01] Polyhydroxylic alcohols [1, 2006.01] Polyhydroxylic alcohols [1, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/38 29/40 29/42 29/44		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metalalkynes [3, 2006.01] increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon double or triple bond (C07C 29/16 takes precedence) [3, 2006.01] by diene-synthesis [3, 2006.01] by oxidation reactions with formation of hydroxy groups [3, 2006.01] with molecular oxygen only [3, 2006.01] with molecular oxygen only [3, 2006.01] in the presence of mineral boron compounds 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18 31/20 31/22 31/24 31/26 31/27	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon atoms [3, 2006.01] Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] monocyclic [3, 2006.01] with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] polycyclic with condensed ring systems [3, 2006.01] Polyhydroxylic acyclic alcohols [1, 2006.01] Dihydroxylic alcohols [1, 2006.01] Trihydroxylic alcohols, e.g. glycerol [1, 3, 2006.01] Tetrahydroxylic alcohols, e.g. pentaerythritol [1, 3, 2006.01] Hexahydroxylic alcohols [1, 2006.01] Polyhydroxylic alcohols [1, 2006.01] Polyhydroxylic alcohols [1, 2006.01] Polyhydroxylic alcohols containing saturated rings [3, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/38 29/40 29/42 29/44 29/44 29/48 29/50		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metalalkynes [3, 2006.01] increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon double or triple bond (C07C 29/16 takes precedence) [3, 2006.01] by diene-synthesis [3, 2006.01] by oxidation reactions with formation of hydroxy groups [3, 2006.01] with molecular oxygen only [3, 2006.01] in the presence of mineral boron compounds with, when necessary, hydrolysis of the 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18 31/20 31/22 31/24 31/26 31/27 31/28	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon atoms [3, 2006.01] monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] polycyclic with condensed ring systems [3, 2006.01] polyhydroxylic acyclic alcohols [1, 2006.01] Dihydroxylic alcohols [1, 2006.01] Trihydroxylic alcohols, e.g. glycerol [1, 3, 2006.01] Tetrahydroxylic alcohols, e.g. pentaerythritol [1, 3, 2006.01] Hexahydroxylic alcohols [1, 2006.01] Polyhydroxylic alcohols containing saturated rings [3, 2006.01] Metal alcoholates [1, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/38 29/40 29/42 29/44 29/48 29/50 29/52		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metalalkynes [3, 2006.01] increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon double or triple bond (C07C 29/16 takes precedence) [3, 2006.01] by diene-synthesis [3, 2006.01] by oxidation reactions with formation of hydroxy groups [3, 2006.01] with molecular oxygen only [3, 2006.01] in the presence of mineral boron compounds with, when necessary, hydrolysis of the intermediate formed [3, 2006.01] 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18 31/20 31/22 31/24 31/26 31/27	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon atoms [3, 2006.01] monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] polycyclic with condensed ring systems [3, 2006.01] polyhydroxylic acyclic alcohols [1, 2006.01] Trihydroxylic alcohols, e.g. glycerol [1, 3, 2006.01] Tetrahydroxylic alcohols, e.g. pentaerythritol [1, 3, 2006.01] Hexahydroxylic alcohols [1, 2006.01] Polyhydroxylic alcohols containing saturated rings [3, 2006.01] Metal alcoholates [1, 2006.01] Metal alcoholates [1, 2006.01] Alkali-metal or alkaline-earth-metal
29/19 29/20 29/32 29/34 29/36 29/38 29/40 29/42 29/44 29/44 29/48 29/50		triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metal-alkynes [3, 2006.01] increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon double or triple bond (CO7C 29/16 takes precedence) [3, 2006.01] by diene-synthesis [3, 2006.01] by oxidation reactions with formation of hydroxy groups [3, 2006.01] with molecular oxygen only [3, 2006.01] with molecular oxygen only [3, 2006.01] in the presence of mineral boron compounds with, when necessary, hydrolysis of the intermediate formed [3, 2006.01]	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18 31/20 31/22 31/24 31/26 31/27 31/28	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon atoms [3, 2006.01] monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] polycyclic with condensed ring systems [3, 2006.01] polyhydroxylic acyclic alcohols [1, 2006.01] Dihydroxylic alcohols [1, 2006.01] Trihydroxylic alcohols, e.g. glycerol [1, 3, 2006.01] Tetrahydroxylic alcohols, e.g. pentaerythritol [1, 3, 2006.01] Hexahydroxylic alcohols containing saturated rings [3, 2006.01] Metal alcoholates [1, 2006.01] Metal alcoholates [1, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/38 29/40 29/42 29/44 29/48 29/50 29/52		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metalalkynes [3, 2006.01] increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon double or triple bond (C07C 29/16 takes precedence) [3, 2006.01] by diene-synthesis [3, 2006.01] by oxidation reactions with formation of hydroxy groups [3, 2006.01] with molecular oxygen only [3, 2006.01] in the presence of mineral boron compounds with, when necessary, hydrolysis of the intermediate formed [3, 2006.01] 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18 31/20 31/22 31/24 31/26 31/27 31/28 31/30	 Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] Monohydroxylic acyclic alcohols [1, 2006.01] Methanol [1, 2006.01] Ethanol [1, 2006.01] containing three carbon atoms [1, 2006.01] containing four carbon atoms [1, 2006.01] containing five to twenty-two carbon atoms [3, 2006.01] monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] polycyclic with condensed ring systems [3, 2006.01] polyhydroxylic acyclic alcohols [1, 2006.01] Dihydroxylic alcohols, e.g. glycerol [1, 3, 2006.01] Trihydroxylic alcohols, e.g. pentaerythritol [1, 3, 2006.01] Hexahydroxylic alcohols [1, 2006.01] Polyhydroxylic alcohols containing saturated rings [3, 2006.01] Metal alcoholates [1, 2006.01] Alkali-metal or alkaline-earth-metal alcoholates [1, 2006.01]

10

31/36	• • the halogen not being fluorine [3, 2006.01]	33/50	containing six-membered aromatic rings and other
31/38	 containing only fluorine as halogen [3, 2006.01] 	557 50	rings [3, 2006.01]
31/40	• • perhalogenated [3, 2006.01]	DE (00	
31/42	Halogenated polyhydroxylic acyclic	35/00	Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a
24 / 44	alcohols [3, 2006.01]		six-membered aromatic ring [1, 2, 2006.01]
31/44	 Halogenated alcohols containing saturated rings [3, 2006.01] 	35/02	 monocyclic [1, 2006.01]
	1111g5 [5, 2000.01]	35/04	 containing three- or four-membered
33/00	Unsaturated compounds having hydroxy or O-metal	0= /00	rings [1, 2006.01]
	groups bound to acyclic carbon atoms [1, 2006.01]	35/06	containing five-membered rings [1, 2006.01]containing six-membered rings [1, 2006.01]
	Note(s) [3]	35/08 35/12	• • • Menthol [1, 2006.01]
	In this group, in condensed ring systems of six-	35/12	• • • with more than one hydroxy group bound to the
	membered aromatic rings and other rings, the double	55711	ring [1, 2006.01]
	bond belonging to a benzene ring is not considered as	35/16	• • • • Inositol [1, 2006.01]
	unsaturated for the non-aromatic ring condensed thereon, e.g. the 1,2,3,4-tetrahydro- naphthalene ring is	35/17	• • • with unsaturation only outside the
	considered to be saturated outside the aromatic ring.	DE /40	ring [3, 2006.01]
33/02	Acyclic alcohols with carbon-to-carbon double	35/18	• • with unsaturation at least in the ring [1, 3, 2006.01]
	bonds [1, 2006.01]	35/20	containing seven- or eight-membered
33/025	• with only one double bond [3, 2006.01]	55,20	rings [1, 2006.01]
33/03	• • in beta-position, e.g. allyl alcohol, methallyl alcohol [3, 2006.01]	35/205	• containing nine- to twelve-membered rings, e.g.
33/035	• • • Alkenediols [3, 2006.01]	35/21	cyclododecanols [3, 2006.01] • polycyclic, at least one hydroxy group bound to a
33/04	Acyclic alcohols with carbon-to-carbon triple	33/21	non-condensed ring [2, 2006.01]
22/2/2	bonds [1, 2006.01]	35/22	 polycyclic, at least one hydroxy group bound to a
33/042 33/044	with only one triple bond [3, 2006.01]Alkynediols [3, 2006.01]		condensed ring system [1, 2, 2006.01]
33/044	• • • Butynediols [3, 2006.01]	35/23	• • with a hydroxy group on a condensed ring system
33/048	 with double and triple bonds [3, 2006.01] 	35/24	having two rings [3, 2006.01]• the condensed ring system containing five
33/05	Alcohols containing rings other than six-membered	33/24	carbon atoms [1, 3, 2006.01]
	aromatic rings [2, 2006.01]	35/26	• • • Bicyclopentadienols [1, 3, 2006.01]
33/12	• • containing five-membered rings [3, 2006.01]	35/27	 the condensed ring system containing six
33/14	• • containing six-membered rings [3, 2006.01]	0= /00	carbon atoms [3, 2006.01]
33/16	 containing rings with more than six ring members [3, 2006.01] 	35/28	• • the condensed ring system containing seven carbon atoms [1, 3, 2006.01]
33/18	 Monohydroxylic alcohols containing only six- 	35/29	• • • being a [2.2.1] system [3, 2006.01]
	membered aromatic rings as cyclic part [3, 2006.01]	35/30	• • • • Borneol; Isoborneol [1, 3, 2006.01]
33/20 33/22	• • monocyclic [3, 2006.01]	35/31	• • • the condensed ring system containing eight
33/22	• • Benzylalcohol; Phenylethyl alcohol [3, 2006.01]	35/32	carbon atoms [3, 2006.01] • • the condensed ring system being a [4.3.0]
33/24	polycyclic without condensed ring	33/32	system, e.g. indenols [1, 3, 2006.01]
	systems [3, 2006.01]	35/34	• • • the condensed ring system being a [5.3.0]
33/26	Polyhydroxylic alcohols containing only six-		system, e.g. azulenols [1, 3, 2006.01]
22 /20	membered aromatic rings as cyclic part [3, 2006.01]	35/36	• • • the condensed ring system being a [4.4.0]
33/28	 Alcohols containing only six-membered aromatic rings as cyclic part with unsaturation outside the 		system, e.g. hydrogenated naphthols [1, 3, 2006.01]
	aromatic rings [3, 2006.01]	35/37	with a hydroxy group on a condensed ring system
33/30	• • monocyclic [3, 2006.01]	23, 3,	having three rings [3, 2006.01]
33/32	• • • Cinnamyl alcohol [3, 2006.01]	35/38	 derived from the fluorene
33/34	Monohydroxylic alcohols containing six-membered	0= / :-	skeleton [1, 3, 2006.01]
22/26	aromatic rings and other rings [3, 2006.01]	35/40	• • derived from the anthracene skeleton [1, 3, 2006.01]
33/36	 Polyhydroxylic alcohols containing six-membered aromatic rings and other rings [3, 2006.01] 	35/42	• • • derived from the phenanthrene
33/38	Alcohols containing six-membered aromatic rings	33, 42	skeleton [1, 3, 2006.01]
	and other rings and having unsaturation outside the	35/44	• • with a hydroxy group on a condensed ring system
	aromatic rings [3, 2006.01]		having more than three rings [1, 2006.01]
33/40	• Halogenated unsaturated alcohols [3, 2006.01]	35/46	 O-metal derivatives of the cyclically bound hydroxy groups [3, 2006.01]
33/42 33/44	 acyclic [3, 2006.01] containing rings other than six-membered	35/48	 Halogenated derivatives [3, 2006.01]
55/ 14	aromatic rings [3, 2006.01]	35/50	 • Alcohols with at least two rings [3, 2006.01]
33/46	containing only six-membered aromatic rings as	35/52	Alcohols with a condensed ring
	cyclic part [3, 2006.01]		system [3, 2006.01]
33/48	• • with unsaturation outside the aromatic rings [3, 2006.01]	37/00	Preparation of compounds having hydroxy or O-
			metal groups bound to a carbon atom of a six- membered aromatic ring [1, 2006.01]

37/01	•	by replacing functional groups bound to a six- membered aromatic ring by hydroxy groups, e.g. by	37/82	•	• • by solid-liquid treatment; by chemisorption [3, 2006.01]
		hydrolysis [3, 2006.01]	37/84		• • by crystallisation [3, 2006.01]
37/02		• by substitution of halogen [1, 3, 2006.01]	37/86	•	 by treatment giving rise to a chemical
37/04	•	 by substitution of SO₃H groups or a derivative thereof [1, 3, 2006.01] 			modification (by chemisorption C07C 37/82) [3, 2006.01]
37/045	•	 by substitution of a group bound to the ring by nitrogen [3, 2006.01] 	37/88	•	• Use of additives, e.g. for stabilisation [3, 2006.01]
37/05	•	• • by substitution of a NH ₂ group [3, 2006.01]	39/00		ompounds having at least one hydroxy or O-metal
37/055		 by substitution of a group bound to the ring by oxygen, e.g. ether group [3, 2006.01] 			roup bound to a carbon atom of a six-membered romatic ring [1, 2006.01]
37/06	•	by conversion of non-aromatic six-membered rings or of such rings formed <u>in situ</u> into aromatic six-			Note(s) [3]
		membered rings, e.g. by dehydrogenation [1, 2006.01]		m	n this group, in condensed ring systems of six- nembered aromatic rings and other rings, the double
37/07	•	 with simultaneous reduction of C=O group in that ring [3, 2006.01] 		u	ond belonging to the benzene ring is not considered as nsaturated for the non-aromatic ring condensed nereon.
37/08	•	by decomposition of hydroperoxides, e.g. cumene hydroperoxide [1, 2006.01]	39/02		monocyclic with no unsaturation outside the aromatic ring [1, 2006.01]
37/11	•	by reactions increasing the number of carbon	39/04		• Phenol [1, 2006.01]
		atoms [3, 2006.01]	39/06		• Alkylated phenols [1, 2006.01]
37/14	•	by addition reactions, i.e. reactions involving at	39/07		 containing only methyl groups as alkyl groups,
		least one carbon-to-carbon unsaturated bond [1, 3, 2006.01]			e.g. cresols, xylenols [3, 2006.01]
37/16	•	 by condensation involving hydroxy groups of 	39/08	•	 Dihydroxy benzenes; Alkylated derivatives thereof [1, 2006.01]
		phenols or alcohols or the ether or mineral ester group derived therefrom [1, 3, 2006.01]	39/10	•	Polyhydroxy benzenes; Alkylated derivatives
37/18	•	 by condensation involving halogen atoms of halogenated compounds [1, 2006.01] 	20/44		thereof (C07C 39/08 takes precedence) [1, 2006.01]
37/20	•	• using aldehydes or ketones [1, 2006.01]	39/11	•	Alkylated hydroxy benzenes containing also acceptionally bound hydroxy groups a g
37/48	•	by exchange of hydrocarbon groups which may be substituted, from other compounds, e.g.	20/42		acyclically bound hydroxy groups, e.g. saligenol [3, 2006.01]
		transalkylation [3, 2006.01]	39/12	•	polycyclic with no unsaturation outside the aromatic rings [1, 2006.01]
37/50	•	by reactions decreasing the number of carbon atoms (C07C 37/01, C07C 37/08, C07C 37/48 take	39/14	•	 with at least one hydroxy group on a condensed ring system containing two rings [1, 3, 2006.01]
		precedence) [3, 2006.01]	39/15		 with all hydroxy groups on non-condensed
37/52	•	 by splitting polyaromatic compounds, e.g. polyphenolalkanes [3, 2006.01] 			rings [3, 2006.01]
37/54	•	 by hydrolysis of lignin or sulfite waste liquor [3, 2006.01] 	39/16		Bis(hydroxy phenyl)alkanes; Tris(hydroxy phenyl)alkanes [1, 3, 2006.01]
37/56	•	 by replacing a carboxyl or aldehyde group by a hydroxy group [3, 2006.01] 	39/17		containing other rings in addition to the six- membered aromatic rings [2, 2006.01]
37/58	•	by oxidation reactions introducing directly a hydroxy group on a CH-group belonging to a six-membered	39/18		monocyclic with unsaturation outside the aromatic ring [1, 2006.01]
		aromatic ring with the aid of molecular oxygen [3, 2006.01]	39/19		 containing carbon-to-carbon double bonds but no carbon-to-carbon triple bonds [3, 2006.01]
37/60	•	by oxidation reactions introducing directly a hydroxy	39/20	•	 Hydroxy styrenes [1, 3, 2006.01]
		group on a CH-group belonging to a six-membered aromatic ring with the aid of other oxidants than	39/205	•	polycyclic, containing only six-membered aromatic rings as cyclic part, with unsaturation outside the rings [3, 2006.01]
		molecular oxygen or their mixtures with molecular oxygen [3, 2006.01]	39/21		• with at least one hydroxy group on a non-
37/62	•		55/21		condensed ring [3, 2006.01]
37/64		Preparation of O-metal compounds with the O-metal	20/215		HO-\(\bigc\)-\(\bigc\)-\(\bigc\)-OH
		group linked to a carbon atom belonging to a six-membered aromatic ring [3, 2006.01]	39/215	·	• containing the structure, e.g. diethylstilbestrol [3, 2006.01]
37/66	•	 by conversion of hydroxy groups to O-metal groups [3, 2006.01] 	39/225		 with at least one hydroxy group on a condensed ring system [3, 2006.01]
37/68	•	Separation; Purification; Stabilisation; Use of additives [3, 2006.01]	39/23	•	polycyclic, containing six-membered aromatic rings and other rings, with unsaturation outside the
37/70	•	• by physical treatment [3, 2006.01]	39/235		aromatic rings [3, 2006.01] Metal derivatives of a hydroxy group bound to a six-
37/72		• • by liquid-liquid treatment [3, 2006.01]	331233	•	membered aromatic ring [3, 2006.01]
37/74	•	• • by distillation [3, 2006.01]	39/24		Halogenated derivatives [1, 2006.01]
37/76	•	• • • by steam distillation [3, 2006.01]	39/26		monocyclic monohydroxylic containing halogen
37/78	•	• • • by azeotropic distillation [3, 2006.01]			bound to ring carbon atoms [1, 2006.01]
37/80	•	• • by extractive distillation [3, 2006.01]	39/27	•	all halogen atoms being attached to the
					ring [1, 2006.01]

39/28	• • • the halogen being one chlorine	41/36 • • • by solid-liquid treatment; by
39/30	atom [1, 2006.01] • • • the halogen being two chlorine	chemisorption [3, 2006.01] 41/38 • • • by liquid-liquid treatment [3, 2006.01]
33730	atoms [1, 2006.01]	41/40 • • • by change of physical state, e.g. by
39/32	• • • the halogen being three chlorine	crystallisation [3, 2006.01]
20 /24	atoms [1, 2006.01]	41/42 • • • • by distillation [3, 2006.01]
39/34	• • • the halogen being four chlorine atoms [1, 2006.01]	41/44 • • • by treatment giving rise to a chemical modification (by chemisorption
39/36	• • • • Pentachlorophenol [1, 2006.01]	C07C 41/36) [3, 2006.01]
39/367	 polycyclic non-condensed, containing only six- 	41/46 • • • Use of additives, e.g. for
	membered aromatic rings, e.g. halogenated poly-	stabilisation [3, 2006.01]
39/373	(hydroxy-phenyl)alkanes [3, 2006.01]with all hydroxy groups on non-condensed rings	Σ(^{U-})
33/3/3	and with unsaturation outside the aromatic	• Preparation of compounds having CO-C groups [3, 2006.01]
	rings [3, 2006.01]	21/50 • • by reactions producing 0-
39/38	with at least one hydroxy group on a condensed	11750 by reactions producing
20 / 40	ring system containing two rings [1, 2006.01]	groups [3, 2006.01]
39/40	 with at least one hydroxy group on a condensed ring system containing more than two 	41/52 • • • by substitution of halogen only [3, 2006.01]
	rings [3, 2006.01]	41/54 • • • by addition of compounds to unsaturated carbon-to-carbon bonds [3, 2006.01]
39/42	 containing six-membered aromatic rings and other 	41/56 • • • by condensation of aldehydes,
20/44	rings [3, 2006.01]	paraformaldehyde, or ketones [3, 2006.01]
39/44	 Metal derivatives of a hydroxy group bound to a carbon atom of a six-membered aromatic 	41/58 • • Separation; Purification; Stabilisation; Use of
	ring [3, 2006.01]	additives [3, 2006.01]
41 /00	Duranation of others. Duranation of some and	
41/00	Preparation of ethers; Preparation of compounds ∩-	41/60 • Preparation of compounds having O-C groups or
	0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0	,Ô-
	, ^{C,} 0C , 0-C	C\0-C
	having CO-C groups, O-C groups or O-C	
	groups [1, 3, 2006.01]	'O-C groups [3, 2006.01]
41/01		\r_\0-
41/02 41/03	• from oxiranes [1, 3, 2006.01]• by reaction of an oxirane ring with a hydroxy	43/00 Ethers; Compounds having C^{0-} groups,
41/03	group [3, 2006.01]	0-
41/05	 by addition of compounds to unsaturated 	-L-U-L
	compounds [3, 2006.01]	-C(O-C
41/06	• • by addition of organic compounds only [1, 3, 2006.01]	43/02 • Ethers [1, 2006.01]
41/08	• • • to carbon-to-carbon triple	43/03 • having all ether-oxygen atoms bound to acyclic
	bonds [1, 3, 2006.01]	carbon atoms [3, 2006.01]
41/09	by dehydration of compounds containing hydroxy	43/04 • • • Saturated ethers [1, 3, 2006.01] 43/06 • • • Diethyl ether [1, 3, 2006.01]
41/14	groups [3, 2006.01] • by exchange of organic parts on the ether-oxygen	43/10 • • • • of polyhydroxy compounds [1, 3, 2006.01]
41/14	for other organic parts, e.g. by trans-	43/11 • • • • Polyethers containing —O—(C—C)
	etherification [3, 2006.01]	—) _n units with $2 \le n \le 10$ [2, 3, 2006.01]
41/16	by reaction of esters of mineral or organic acids	43/115 • • • containing carbocyclic rings [3, 2006.01]
41/10	with hydroxy or O-metal groups [3, 2006.01]	43/12 • • • containing halogen [1, 3, 2006.01]
41/18	 by reactions not forming ether-oxygen bonds [3, 2006.01] 	43/13 • • • • containing hydroxy or O-metal groups (C07C 43/11 takes precedence) [3, 2006.01]
41/20	by hydrogenation of carbon-to-carbon double	43/14 • • • Unsaturated ethers [1, 3, 2006.01]
	or triple bonds [3, 2006.01]	43/15 • • • containing only non-aromatic carbon-to-
41/22	• • • by introduction of halogen; by substitution of	carbon double bonds [3, 2006.01]
	halogen atoms by other halogen atoms [3, 2006.01]	43/16 • • • • Vinyl ethers [1, 3, 2006.01]
41/24	• • • by elimination of halogen, e.g. elimination of	43/162 • • • containing rings other than six-membered aromatic rings [3, 2006.01]
	HCl [3, 2006.01]	43/164 • • • containing six-membered aromatic
41/26	• • by introduction of hydroxy or O-metal	rings [3, 2006.01]
	ID D000 043	43/166 • • • • having unsaturation outside the aromatic
41 /20	groups [3, 2006.01]	
41/28 41/30	• • • from acetals, e.g. by dealcoholysis [3, 2006.01]	rings [3, 2006.01]
41/28 41/30		rings [3, 2006.01] 43/168 • • • • containing six-membered aromatic rings
	• from acetals, e.g. by dealcoholysis [3, 2006.01]• by increasing the number of carbon atoms, e.g.	rings [3, 2006.01]
41/30	 • from acetals, e.g. by dealcoholysis [3, 2006.01] • by increasing the number of carbon atoms, e.g. by oligomerisation [3, 2006.01] • by isomerisation [3, 2006.01] • Separation; Purification; Stabilisation; Use of 	rings [3, 2006.01] 43/168 • • • • containing six-membered aromatic rings and other rings [3, 2006.01] 43/17 • • • containing halogen [2, 3, 2006.01] 43/172 • • • containing rings other than six-membered
41/30 41/32	 • from acetals, e.g. by dealcoholysis [3, 2006.01] • by increasing the number of carbon atoms, e.g. by oligomerisation [3, 2006.01] • by isomerisation [3, 2006.01] 	rings [3, 2006.01] 43/168 • • • • containing six-membered aromatic rings and other rings [3, 2006.01] 43/17 • • • containing halogen [2, 3, 2006.01]

43/174	• • • • containing six-membered aromatic rings [3, 2006.01]	43/317	• • having O-X • o-C groups, X being hydrogen or metal 13, 2006.011
43/176	• • • • • having unsaturation outside the aromatic rings [3, 2006.01]		
43/178	• • • containing hydroxy or O-metal groups [3, 2006.01]		0- -r-o-r c\o-c
43/18	 having an ether-oxygen atom bound to a carbon atom of a ring other than a six-membered aromatic ring [1, 2006.01] 	43/32	• Compounds having groups [1, 2006.01]
43/184	• • • to a carbon atom of a non-condensed ring [3, 2006.01]	45/00	Preparation of compounds having C=O groups bound only to carbon or hydrogen atoms;
43/188	• • • Unsaturated ethers [3, 2006.01]		Preparation of chelates of such
43/192	• • containing halogen [3, 2006.01]		compounds [1, 2, 2006.01]
43/196	• • containing hydroxy or O-metal	45/26	 by hydration of carbon-to-carbon triple
	groups [3, 2006.01]	45/27	bonds [3, 2006.01] • by oxidation [3, 2006.01]
43/20	having an ether-oxygen atom bound to a carbon atom of a six membered aromatic.	45/28	• • of —CH _x -moieties [3, 2006.01]
	atom of a six-membered aromatic ring [1, 2006.01]	45/29	• • of hydroxy groups [3, 2006.01]
42 /205			
43/205	• • • the aromatic ring being a non-condensed ring [3, 2006.01]	45/30	 with halogen containing compounds, e.g. hypohalogenation [3, 2006.01]
43/21	 containing rings other than six-membered 	45/31	 with compounds containing mercury atoms, which
40 /04 5	aromatic rings [3, 2006.01]		may be regenerated in situ, e.g. by
43/215	• • having unsaturation outside the six-membered	45 (00	oxygen [3, 2006.01]
40.400=	aromatic rings [3, 2006.01]	45/32	• • with molecular oxygen [3, 2006.01]
43/225	• • • containing halogen [3, 2006.01]	45/33	• • of CH _x -moieties [3, 2006.01]
43/23	• • containing hydroxy or O-metal	45/34	• • • in unsaturated compounds [3, 2006.01]
	groups [3, 2006.01]	45/35	• • • • in propene or isobutene [3, 2006.01]
43/235	 having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring and to a 	45/36	• • • • in compounds containing six-membered aromatic rings [3, 2006.01]
	carbon atom of a ring, other than a six-membered	45/37	• • • of C—O— functional groups to C=O
	aromatic ring [3, 2006.01]		groups [3, 2006.01]
43/243	having unsaturation outside the six-membered	45/38	• • • being a primary hydroxy group [3, 2006.01]
43/247	aromatic rings [3, 2006.01] • • • containing halogen [3, 2006.01]	45/39	• • • being a secondary hydroxy
43/253	• containing hydroxy or O-metal	45 / 40	group [3, 2006.01]
107 200	groups [3, 2006.01]	45/40	• by oxidation with ozone; by ozonolysis [3, 2006.01]
43/257	having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic	45/41	 by hydrogenolysis or reduction of carboxylic groups or functional derivatives thereof [3, 2006.01]
	rings [3, 2006.01]	45/42	 by hydrolysis [3, 2006.01]
43/263	• • the aromatic rings being non-	45/43	• of CX ₂ groups, X being halogen [3, 2006.01]
43/203	condensed [3, 2006.01]	45/44	 by reduction and hydrolysis of nitriles [3, 2006.01]
43/267	• • • containing other rings [3, 2006.01]	45/45	 by condensation [3, 2006.01]
		45/46	 Friedel-Crafts reactions [3, 2006.01]
43/275	 having all ether-oxygen atoms bound to carbon atoms of six-membered aromatic 	45/47	• • using phosgene [3, 2006.01]
	rings [3, 2006.01]	45/48	 involving decarboxylation [3, 2006.01]
43/285	• having unsaturation outside the six-membered	45/49	 by reaction with carbon monoxide [3, 2006.01]
43/203	aromatic rings [3, 2006.01]	45/50	 by oxo-reactions [3, 2006.01]
43/29	• • • containing halogen [3, 2006.01]	45/51	 by pyrolysis, rearrangement or
		43/31	decomposition [3, 2006.01]
43/295	• • • containing hydroxy or O-metal groups [3, 2006.01]	45/52	by dehydration and rearrangement involving two
)C<0-	45 (50	hydroxy groups in the same molecule [3, 2006.01]
43/30	• Compounds having CO-C groups [1, 2006.01]	45/53	• • of hydroperoxides [3, 2006.01]
	Note(s) [3]	45/54	 of compounds containing doubly bound oxygen atoms, e.g. esters [3, 2006.01]
	In this group, the acetal carbon atom is the carbon of the	45/55	 of oligo- or polymeric oxo-
	>C<0-C group.		compounds [3, 2006.01]
	U-L group.	45/56	• from heterocyclic compounds (C07C 45/55 takes
43/303	 having acetal carbon atoms bound to acyclic 	. . .==	precedence) [3, 2006.01]
4D /DO=	carbon atoms [3, 2006.01]	45/57	• • with oxygen as the only hetero atom [3, 2006.01]
43/305	having acetal carbon atoms as ring members or	45/58	• • • in three-membered rings [3, 2006.01]
	bound to carbon atoms of rings other than six-membered aromatic rings [3, 2006.01]	45/59	• • in five-membered rings (from ozonides C07C 45/40) [3, 2006.01]
43/307	 having acetal carbon atoms bound to carbon atoms 	45/60	• • • in six-membered rings [3, 2006.01]
	of six-membered aromatic rings [3, 2006.01]	45/61	• by reactions not involving the formation of C=O
43/313	• • containing halogen [3, 2006.01]		groups [3, 2006.01]
43/315	 containing oxygen atoms singly bound to carbon 		- · · · · · · · · · · · · · · · · · · ·

43/315 • containing oxygen atoms singly bound to carbon atoms not being acetal carbon atoms [3, 2006.01]

45/62	• by hydrogenation of carbon-to-carbon double or	47/04 • • Formaldehyde [1, 2006.01]
4F /CD	triple bonds [3, 2006.01]	47/042 • • • Preparation from carbon monoxide [3, 2006.01]
45/63	 • by introduction of halogen; by substitution of halogen atoms by other halogen 	47/045 • • • Preparation by depolymerisation [3, 2006.01]
	atoms [3, 2006.01]	47/048 • • • Preparation by oxidation of hydrocarbons [3, 2006.01]
45/64	by introduction of functional groups containing	47/052 • • • Preparation by oxidation of
	oxygen only in singly bound form [3, 2006.01]	methanol [3, 2006.01]
45/65	 by splitting-off hydrogen atoms or functional 	47/055 • • • using noble metals or compounds thereof as
	groups; by hydrogenolysis of functional	catalysts [3, 2006.01]
4F /CC	groups [3, 2006.01]	47/058 • • • Separation; Purification; Stabilisation; Use of
45/66	• • by dehydration [3, 2006.01]	additives [3, 2006.01]
45/67	 • by isomerisation; by change of size of the carbon skeleton [3, 2006.01] 	47/06 • • Acetaldehyde [1, 2006.01]
45/68	 • • by increase in the number of carbon 	47/07 • • • Preparation by oxidation [3, 2006.01]
	atoms [3, 2006.01]	47/09 • • • Separation; Purification; Stabilisation; Use of additives [3, 2006.01]
45/69	 • • by addition to carbon-to-carbon double or 	47/105 • • containing rings [3, 2006.01]
	triple bonds [3, 2006.01]	47/11 • • • monocyclic [3, 2006.01]
45/70	• • • by reaction with functional groups	47/115 • • • containing condensed ring systems [3, 2006.01]
	containing oxygen only in singly bound form [3, 2006.01]	47/12 • • containing more than one —CHO
45/71	• • • • being hydroxy groups [3, 2006.01]	group [1, 2006.01]
45/72	• • • by reaction of compounds containing C=O	47/127 • • • Glyoxal [3, 2006.01]
43/72	groups with the same or other compounds	47/133 • • • containing rings [3, 2006.01]
	containing C=O groups [3, 2006.01]	47/14 • • containing halogen [1, 2006.01]
45/73	• • • • combined with	47/16 • • • Trichloroacetaldehyde [1, 2006.01]
	hydrogenation [3, 2006.01]	47/17 • • containing rings [3, 2006.01]
45/74	• • • • combined with dehydration [3, 2006.01]	47/19 • • containing hydroxy groups [2, 3, 2006.01]
45/75	• • • • Reactions with	47/192 • • • containing rings [3, 2006.01]
4F /7C	formaldehyde [3, 2006.01]	47/195 • • • containing halogen [3, 2006.01]
45/76 45/77	• • with the aid of ketenes [3, 2006.01]• Preparation of chelates of aldehydes or	47/198 • • containing ether groups, $C<0-$ groups,
43///	Freparation of cherates of afferry des of	
		n-
45/78	ketones [3, 2006.01]Separation; Purification; Stabilisation; Use of	0- ,0- ,0-
45/78	ketones [3, 2006.01]	0- 0-
45/78 45/79	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by 	0- -C-0-C
45/79	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] 	0- 0- 0-C 0-C 0-C 0-C groups, or 0-C groups [3, 2006.01] 47/20 • Unsaturated compounds having —CHO groups
45/79 45/80	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] 	0- -C-0-C groups, or 0-C groups [3, 2006.01] 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01]
45/79	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. 	47/21 • with only carbon-to-carbon double bonds as
45/79 45/80 45/81	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] 	47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01]
45/79 45/80 45/81 45/82	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] 	47/22 • • • Acrylaldehyde;
45/79 45/80 45/81 45/82 45/83	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] 	1
45/79 45/80 45/81 45/82	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by azeotropic distillation [3, 2006.01] 	47/22 • • • Acrylaldehyde;
45/79 45/80 45/81 45/82 45/83 45/84	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by azeotropic distillation [3, 2006.01] 	47/22 • Containing rings other than six-membered
45/79 45/80 45/81 45/82 45/83 45/84 45/85	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] 	47/22 • Containing rings other than six-membered aromatic rings [3, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric 	 Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] Acrylaldehyde;
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by azeotropic distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] 	47/22 • Containing rings other than six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] 	47/22 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • With only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • With only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • Containing rings other than six-membered aromatic rings [3, 2006.01] 47/228 • Containing six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or 	47/22 • Containing rings other than six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by azeotropic distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] 	 Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] Acrylaldehyde;
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87 45/88 45/88	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] 	47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/228 • containing six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01] 47/23 • polycyclic [3, 2006.01] 47/23 • containing six-membered aromatic rings [3, 2006.01] 47/235 • containing six-membered aromatic rings and other rings [3, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87 45/88 45/89	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] 	47/220 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/228 • containing six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01] 47/23 • polycyclic [3, 2006.01] 47/232 • containing six-membered aromatic rings [3, 2006.01] 47/235 • containing six-membered aromatic rings and other rings [3, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87 45/88 45/89 45/90	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] from ketones or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] Preparation of quinones [3, 2006.01]	47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/228 • containing six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01] 47/23 • polycyclic [3, 2006.01] 47/232 • having unsaturation outside the aromatic rings [3, 2006.01] 47/235 • containing six-membered aromatic rings and other rings [3, 2006.01] 47/238 • having unsaturation outside the aromatic rings [3, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87 45/88 45/89	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Treparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by oxidation giving rise to quinoid 	47/22 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/228 • containing six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01] 47/23 • polycyclic [3, 2006.01] 47/232 • having unsaturation outside the aromatic rings [3, 2006.01] 47/235 • containing six-membered aromatic rings and other rings [3, 2006.01] 47/238 • having unsaturation outside the aromatic rings [3, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87 45/88 45/89 45/90 46/00	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by oxidation giving rise to quinoid structures [3, 2006.01] 	47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/228 • containing six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01] 47/23 • polycyclic [3, 2006.01] 47/23 • having unsaturation outside the aromatic rings [3, 2006.01] 47/235 • containing six-membered aromatic rings and other rings [3, 2006.01] 47/236 • containing halogen [1, 2006.01] 47/24 • containing hydroxy groups [1, 3, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87 45/88 45/89 45/90	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Treparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by oxidation giving rise to quinoid 	47/22 • Containing six-membered aromatic rings [3, 2006.01] 47/23 • Dolycyclic [3, 2006.01] 47/24 • Containing six-membered aromatic rings [3, 2006.01] 47/23 • Aving unsaturation outside the aromatic rings [3, 2006.01] 47/24 • Containing halogen [1, 2006.01] 47/25 • Containing six-membered aromatic rings and other rings [3, 2006.01] 47/26 • Containing hydroxy groups [1, 3, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87 45/88 45/89 45/90 46/00	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by oxidation giving rise to quinoid structures [3, 2006.01] of unsubstituted ring carbon atoms in sixmembered aromatic rings [3, 2006.01] of at least one hydroxy group on a six-membered 	47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/228 • containing six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01] 47/23 • polycyclic [3, 2006.01] 47/23 • having unsaturation outside the aromatic rings [3, 2006.01] 47/235 • containing six-membered aromatic rings and other rings [3, 2006.01] 47/236 • containing halogen [1, 2006.01] 47/24 • containing hydroxy groups [1, 3, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87 45/89 45/90 46/00 46/02 46/04 46/06	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by oxidation giving rise to quinoid structures [3, 2006.01] of unsubstituted ring carbon atoms in sixmembered aromatic rings [3, 2006.01] of at least one hydroxy group on a six-membered aromatic ring [3, 2006.01] 	47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/228 • containing six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01] 47/23 • polycyclic [3, 2006.01] 47/232 • containing six-membered aromatic rings and other rings [3, 2006.01] 47/235 • containing six-membered aromatic rings and other rings [3, 2006.01] 47/236 • containing halogen [1, 2006.01] 47/261 • containing hydroxy groups [1, 3, 2006.01] 47/267 • containing rings other than six-membered
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87 45/89 45/90 46/00 46/02 46/04 46/06 46/08	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] preparation of quinones [3, 2006.01] of unsubstituted ring carbon atoms in sixmembered aromatic rings [3, 2006.01] of at least one hydroxy group on a six-membered aromatic ring [3, 2006.01] with molecular oxygen [3, 2006.01] 	 Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] Ar/22 • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] phenylacetaldehyde [3, 2006.01] polycyclic [3, 2006.01] having unsaturation outside the aromatic rings [3, 2006.01] containing six-membered aromatic rings and other rings [3, 2006.01] having unsaturation outside the aromatic rings [3, 2006.01] containing halogen [1, 2006.01] containing hydroxy groups [1, 3, 2006.01] containing hydroxy groups [1, 3, 2006.01] acyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing hydroxy groups [1, 3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87 45/89 45/90 46/00 46/02 46/04 46/06	 ketones [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by oxidation giving rise to quinoid structures [3, 2006.01] of unsubstituted ring carbon atoms in sixmembered aromatic rings [3, 2006.01] of at least one hydroxy group on a six-membered aromatic ring [3, 2006.01] 	O-C-O-C groups, or O-C groups [3, 2006.01] 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/228 • containing six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01] 47/23 • polycyclic [3, 2006.01] 47/23 • having unsaturation outside the aromatic rings [3, 2006.01] 47/23 • containing six-membered aromatic rings and other rings [3, 2006.01] 47/23 • containing six-membered aromatic rings and other rings [3, 2006.01] 47/24 • containing halogen [1, 2006.01] 47/26 • containing hydroxy groups [1, 3, 2006.01] 47/26 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/26 • containing rings other than six-membered aromatic rings [3, 2006.01]

Compounds having —CHO groups [1, 2006.01]

• Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen [1, 2006.01]

47/00

47/02

/L/ = =	,C,U-
47/277 • • containing ether groups, CCO-C groups,	47/575 • • containing ether groups, $C<0-$ groups,
	,0- /
O- O-C O-C O-C O-C O-C O-C O-C O-C Groups, or O-C Groups [3, 2006.01] 47/28 • Saturated compounds having —CHO groups bound to carbon atoms of rings other than six-membered	0- 0,0-0
0-C groups, or 0-C groups [3, 2006.01]	0-C groups, or 0-C groups [3, 2006.01]
47/28 • Saturated compounds having —CHO groups bound	47/58 • • • Vanillin [1, 2006.01]
to carbon atoms of rings other than six-membered	47/30 V Valimin [1, 2000.01]
aromatic rings [1, 2006.01]	49/00 Ketones; Ketenes; Dimeric ketenes; Ketonic
47/293 • • with a three- or four-membered ring [3, 2006.01]	chelates [1, 2006.01]
47/30 • • with a five-membered ring [1, 2006.01]	• Saturated compounds containing keto groups bound
47/32 • • with a six-membered ring [1, 2006.01]	to acyclic carbon atoms [1, 2006.01]
47/33 • • with a seven- to twelve-membered	49/08 • • Acetone [1, 3, 2006.01] 49/10 • • Methyl-ethyl ketone [1, 3, 2006.01]
ring [3, 2006.01]	49/105 • • containing rings [3, 2006.01]
47/34 • • polycyclic [1, 2006.01]	49/11 • • • monocyclic [3, 2006.01]
47/347 • • having a —CHO group on a condensed ring system [3, 2006.01]	49/115 • • • containing condensed ring systems [3, 2006.01]
47/353 • • containing halogen [3, 2006.01]	49/12 • • Ketones containing more than one keto
47/36 • • containing hydroxy groups [1, 2006.01]	group [1, 2006.01]
,c,0-	49/14 • • • Acetylacetone, i.e. 2,4-
47/37 • • containing ether groups, CCC groups,	pentanedione [1, 2006.01]
lacksquare	49/15 • • • containing rings [3, 2006.01]
0- -C \ 0-C -C\0-C	49/16 • • containing halogen [1, 2006.01]
0-C groups, or 0-C groups [3, 2006.01]	49/163 • • • containing rings [3, 2006.01] 49/167 • • containing only fluorine as
	halogen [3, 2006.01]
• Unsaturated compounds having —CHO groups bound to carbon atoms of rings other than six-	49/17 • • containing hydroxy groups [2, 2006.01]
membered aromatic rings [1, 2006.01]	49/172 • • • containing rings [3, 2006.01]
47/395 • • with a three- or four-membered ring [3, 2006.01]	49/173 • • • containing halogen [3, 2006.01]
47/40 • • with a five-membered ring [1, 3, 2006.01])(\(\frac{1}{0}\)-
47/42 • • with a six-membered ring [1, 3, 2006.01]	49/175 • • containing ether groups, $C \subset C = C$ groups,
• • with a seven- to twelve-membered	0- -C-0-C 0-C 0-C 0-C 0-C groups [2, 3, 2006.01]
ring [3, 2006.01]	
47/44 • • polycyclic [1, 3, 2006.01] 47/445 • • containing a condensed ring	0-C groups, or 0-C groups [2, 3, 2006.01]
system [3, 2006.01]	49/185 • • containing —CHO groups [3, 2006.01]
47/45 • having unsaturation outside the rings [2, 2006.01]	49/20 • Unsaturated compounds containing keto groups
47/453 • • containing six-membered aromatic	bound to acyclic carbon atoms [1, 2006.01]
rings [3, 2006.01]	
	49/203 • • with only carbon-to-carbon double bonds as
47/457 • • containing halogen [3, 2006.01]	unsaturation [3, 2006.01]
	unsaturation [3, 2006.01] 49/205 • • • Methyl-vinyl ketone [3, 2006.01]
47/457 • • containing halogen [3, 2006.01] 47/46 • • containing hydroxy groups [1, 2006.01]	unsaturation [3, 2006.01] 49/205 • • Methyl-vinyl ketone [3, 2006.01] 49/207 • • with only carbon-to-carbon triple bonds as
47/457 • • containing halogen [3, 2006.01] 47/46 • • containing hydroxy groups [1, 2006.01] 47/47 • • containing ether groups,	unsaturation [3, 2006.01] 49/205 • • Methyl-vinyl ketone [3, 2006.01] 49/207 • • With only carbon-to-carbon triple bonds as unsaturation [3, 2006.01]
47/457 • • containing halogen [3, 2006.01] 47/46 • • containing hydroxy groups [1, 2006.01] 47/47 • • containing ether groups,	unsaturation [3, 2006.01] 49/205 • • Methyl-vinyl ketone [3, 2006.01] 49/207 • • with only carbon-to-carbon triple bonds as
47/457 • containing halogen [3, 2006.01] 47/46 • containing hydroxy groups [1, 2006.01] 47/47 • containing ether groups, O- O- C- O-C O-C O-C	unsaturation [3, 2006.01] 49/205 • • Methyl-vinyl ketone [3, 2006.01] 49/207 • • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • • containing six-membered aromatic
47/457 • containing halogen [3, 2006.01] 47/46 • containing hydroxy groups [1, 2006.01] 47/47 • containing ether groups, O- O- C- O-C O-C O-C	unsaturation [3, 2006.01] 49/205 • • Methyl-vinyl ketone [3, 2006.01] 49/207 • • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • • containing six-membered aromatic rings [3, 2006.01]
47/457 • containing halogen [3, 2006.01] 47/46 • containing hydroxy groups [1, 2006.01] 47/47 • containing ether groups, 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0-	unsaturation [3, 2006.01] 49/205 • • Methyl-vinyl ketone [3, 2006.01] 49/207 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • • polycyclic [3, 2006.01]
47/457 • containing halogen [3, 2006.01] 47/46 • containing hydroxy groups [1, 2006.01] 47/47 • containing ether groups, O- CO-C O-C O-C O-C O-C groups, or O- CO-C O-C O-C Groups [3, 2006.01] 47/52 • Compounds having —CHO groups bound to carbon atoms of six-membered aromatic rings [1, 2006.01]	unsaturation [3, 2006.01] 49/205 • • Methyl-vinyl ketone [3, 2006.01] 49/207 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic
 47/457 • containing halogen [3, 2006.01] 47/46 • containing hydroxy groups [1, 2006.01] 47/47 • containing ether groups,	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/217 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01]
47/457 • containing halogen [3, 2006.01] 47/46 • containing hydroxy groups [1, 2006.01] 47/47 • containing ether groups, O- C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C	unsaturation [3, 2006.01] 49/205 • • Methyl-vinyl ketone [3, 2006.01] 49/207 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01] 49/223 • • • polycyclic [3, 2006.01]
47/457 • containing halogen [3, 2006.01] 47/46 • containing hydroxy groups [1, 2006.01] 47/47 • containing ether groups, O- O-C O-C O-C O-C O-C Groups, or O- CHO groups [3, 2006.01] 47/52 • Compounds having —CHO groups bound to carbon atoms of six-membered aromatic rings [1, 2006.01] 47/54 • Benzaldehyde [1, 2006.01] 47/542 • Alkylated benzaldehydes [3, 2006.01] 47/544 • Diformyl-benzenes; Alkylated derivatives	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/207 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01]
47/457 • containing halogen [3, 2006.01] 47/46 • containing hydroxy groups [1, 2006.01] 47/47 • containing ether groups, O- C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/21 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01] 49/223 • • polycyclic [3, 2006.01] 49/225 • containing six-membered aromatic rings [3, 2006.01] 49/227 • containing six-membered aromatic rings and other rings [3, 2006.01]
47/457 •	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/21 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01] 49/223 • polycyclic [3, 2006.01] 49/225 • containing six-membered aromatic rings [3, 2006.01] 49/227 • containing six-membered aromatic rings and other rings [3, 2006.01] 49/227 • containing six-membered aromatic rings and other rings [3, 2006.01] 49/23 • containing six-membered aromatic rings and other rings [3, 2006.01]
 47/457 • containing halogen [3, 2006.01] 47/46 • containing hydroxy groups [1, 2006.01] 47/47 • containing ether groups, 47/47 • containing ether groups, 0-C groups, 0-C Groups [3, 2006.01] 47/52 • Compounds having —CHO groups bound to carbon atoms of six-membered aromatic rings [1, 2006.01] 47/54 • Benzaldehyde [1, 2006.01] 47/542 • Alkylated benzaldehydes [3, 2006.01] 47/544 • Diformyl-benzenes; Alkylated derivatives thereof [3, 2006.01] 47/546 • polycyclic [3, 2006.01] 47/547 having unsaturation outside the six-membered aromatic rings [3, 2006.01] 	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/21 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01] 49/223 • polycyclic [3, 2006.01] 49/225 • containing six-membered aromatic rings and other rings [3, 2006.01] 49/227 • containing halogen [3, 2006.01] 49/23 • containing rings other than six-membered aromatic rings [3, 2006.01]
 47/457 • containing halogen [3, 2006.01] 47/46 • containing hydroxy groups [1, 2006.01] 47/47 • containing ether groups, 47/47 • containing ether groups, 0-C Groups, 0-C Groups [3, 2006.01] 47/52 • Compounds having —CHO groups bound to carbon atoms of six-membered aromatic rings [1, 2006.01] 47/54 • Benzaldehyde [1, 2006.01] 47/542 • Alkylated benzaldehydes [3, 2006.01] 47/544 • Diformyl-benzenes; Alkylated derivatives thereof [3, 2006.01] 47/546 • polycyclic [3, 2006.01] 47/547 • having unsaturation outside the six-membered aromatic rings [3, 2006.01] 47/55 • containing halogen [2, 2006.01] 	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/207 • With only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01] 49/223 • polycyclic [3, 2006.01] 49/225 • containing six-membered aromatic rings [3, 2006.01] 49/227 • containing six-membered aromatic rings and other rings [3, 2006.01] 49/233 • containing rings other than six-membered aromatic rings [3, 2006.01]
47/457 • • containing halogen [3, 2006.01] 47/46 • • containing hydroxy groups [1, 2006.01] 47/47 • • containing ether groups, □- □- □- □- □- □- □- □- □- □- □- □- □-	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/21 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01] 49/223 • ontaining six-membered aromatic rings [3, 2006.01] 49/225 • containing six-membered aromatic rings and other rings [3, 2006.01] 49/227 • containing halogen [3, 2006.01] 49/23 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/23 • containing six-membered aromatic rings [3, 2006.01]
47/457 • • containing halogen [3, 2006.01] 47/46 • • containing hydroxy groups [1, 2006.01] 47/47 • • containing ether groups, □- □- □- □- □- □- □- □- □- □- □- □- □-	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/207 • With only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01] 49/223 • polycyclic [3, 2006.01] 49/225 • containing six-membered aromatic rings [3, 2006.01] 49/227 • containing six-membered aromatic rings and other rings [3, 2006.01] 49/233 • containing rings other than six-membered aromatic rings [3, 2006.01]
47/457 • • containing halogen [3, 2006.01] 47/46 • • containing hydroxy groups [1, 2006.01] 47/47 • • containing ether groups, □- □- □- □- □- □- □- □- □- □- □- □- □-	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/207 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01] 49/223 • polycyclic [3, 2006.01] 49/225 • containing six-membered aromatic rings and other rings [3, 2006.01] 49/227 • containing halogen [3, 2006.01] 49/231 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/233 • having unsaturation outside the aromatic rings [3, 2006.01] 49/235 • having unsaturation outside the aromatic rings [3, 2006.01]
47/457 • • containing halogen [3, 2006.01] 47/46 • • containing hydroxy groups [1, 2006.01] 47/47 • • containing ether groups, □- □- □- □- □- □- □- □- □- □- □- □- □-	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/211 • With only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/212 • Containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • Containing six-membered aromatic rings [3, 2006.01] 49/215 • Polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01] 49/223 • Polycyclic [3, 2006.01] 49/225 • Containing six-membered aromatic rings and other rings [3, 2006.01] 49/227 • Containing halogen [3, 2006.01] 49/231 • Containing rings other than six-membered aromatic rings [3, 2006.01] 49/233 • Containing six-membered aromatic rings [3, 2006.01] 49/233 • Containing six-membered aromatic rings [3, 2006.01] 49/235 • Aving unsaturation outside the aromatic rings [3, 2006.01] 49/237 • Containing six-membered aromatic rings [3, 2006.01]
47/457 • • containing halogen [3, 2006.01] 47/46 • • containing hydroxy groups [1, 2006.01] 47/47 • • containing ether groups, □- □- □- □- □- □- □- □- □- □- □- □- □-	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/217 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/218 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/219 • polycyclic [3, 2006.01] 49/210 • polycyclic [3, 2006.01] 49/211 • polycyclic [3, 2006.01] 49/212 • polycyclic [3, 2006.01] 49/223 • polycyclic [3, 2006.01] 49/225 • containing six-membered aromatic rings and other rings [3, 2006.01] 49/227 • containing halogen [3, 2006.01] 49/230 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/233 • containing six-membered aromatic rings [3, 2006.01] 49/233 • containing six-membered aromatic rings [3, 2006.01] 49/235 • containing six-membered aromatic rings [3, 2006.01] 49/237 • containing six-membered aromatic rings [3, 2006.01] 49/237 • containing six-membered aromatic rings [3, 2006.01] 49/237 • containing six-membered aromatic rings [3, 2006.01]
47/457 • • containing halogen [3, 2006.01] 47/46 • • containing hydroxy groups [1, 2006.01] 47/47 • • containing ether groups, □- □- □- □- □- □- □- □- □- □- □- □- □-	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/217 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/218 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/219 • containing six-membered aromatic rings [3, 2006.01] 49/210 • polycyclic [3, 2006.01] 49/211 • having unsaturation outside the aromatic rings [3, 2006.01] 49/222 • polycyclic [3, 2006.01] 49/223 • ocontaining six-membered aromatic rings and other rings [3, 2006.01] 49/227 • containing halogen [3, 2006.01] 49/230 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/233 • containing six-membered aromatic rings [3, 2006.01] 49/235 • having unsaturation outside the aromatic rings [3, 2006.01] 49/237 • containing six-membered aromatic rings [3, 2006.01]

49/245	• •	 containing six-membered aromatic rings [3, 2006.01] 	49/497	•		a keto group being part of a six-membered ring [3, 2006.01]
49/248		 having unsaturation outside the aromatic rings [3, 2006.01] 	49/503	•	• •	a keto group being part of a seven- to twelve- membered ring [3, 2006.01]
49/252		• containing six-membered aromatic rings and	49/507			polycyclic [3, 2006.01]
43/232		other rings [3, 2006.01]				 a keto group being part of a condensed ring
		<u>`</u> C-				system [3, 2006.01]
49/255	• •	containing ether groups, CO-C groups,				ntaining ether groups,
		υ- Λ-	49/517	•	• cor	ntaining ether groups,
		-cc				0/0-C
		0- 0- 0-C 0-C 0-C 0-C 0-C 0-C 0-			-C	0- 0-C 0-C groups, or 0-C groups [3, 2006.01]
49/258		containing —CHO groups [3, 2006.01]				
49/29		Saturated compounds containing keto groups bound				ntaining —CHO groups [3, 2006.01]
49/293		o rings [3, 2006.01] to a three- or four-membered ring [3, 2006.01]	49/527	•		urated compounds containing keto groups I to rings other than six-membered aromatic
		to a five-membered ring [3, 2006.01]				[3, 2006.01]
		to a six-membered ring [3, 2006.01]	49/533	•		a three- or four-membered ring [3, 2006.01]
		to a seven- to twelve-membered ring [3, 2006.01]				a five-membered ring [3, 2006.01]
		polycyclic [3, 2006.01]				a six-membered ring [3, 2006.01]
49/317	• •	both carbon atoms bound to the keto group belonging to rings [2, 2006 01]				a seven- to twelve-membered ring [3, 2006.01]
49/323		belonging to rings [3, 2006.01]having keto groups bound to condensed ring			_	ycyclic [3, 2006.01] ving unsaturation outside the rings [3, 2006.01]
43/323		systems [3, 2006.01]				ntaining six-membered aromatic
49/327		containing halogen [3, 2006.01]				gs [3, 2006.01]
		• polycyclic [3, 2006.01]				ntaining halogen [3, 2006.01]
		containing hydroxy groups [3, 2006.01]	49/573	•	• cor	ntaining hydroxy groups [3, 2006.01]
49/345	• •	• polycyclic [3, 2006.01]	40/577		• 601	ntaining ether groups,
49/35		containing ether groups, $C<0-C$ groups,	49/3//	٠		
.57.55		,0-				0- 0-C 0-C groups, or 0-C groups [3, 2006.01]
		0- 0- -C+0-C 0-C 0-C groups, or 0-C 0-C 0-C groups [3, 2006.01]			-C	,
			40 /500			
40/2EE		containing —CHO groups [3, 2006.01]				ntaining —CHO groups [3, 2006.01] urated compounds containing a keto group
		Saturated compounds containing a keto group being	49/30/	٠		part of a ring [3, 2006.01]
437 303		part of a ring [3, 2006.01]	49/593	•		a three- or four-membered ring [3, 2006.01]
49/39		of a three- or four-membered ring [3, 2006.01]	49/597	•	• of a	a five-membered ring [3, 2006.01]
		of a five-membered ring [3, 2006.01]	49/603	•		a six-membered ring, e.g. quinone
		of a six-membered ring [3, 2006.01]	49/607			thides [3, 2006.01] a seven- to twelve-membered ring [3, 2006.01]
		 Menthones [3, 2006.01] of a seven- to twelve-membered ring [3, 2006.01] 				lycyclic [3, 2006.01]
		polycyclic [3, 2006.01]			_	a keto group being part of a condensed ring
49/423		a keto group being part of a condensed ring				system [3, 2006.01]
		system [3, 2006.01]				• having two rings [3, 2006.01]
		• • having two rings [3, 2006.01]	49/627	•	• •	 the condensed ring system containing seven carbon atoms [3, 2006.01]
49/433	• •	• • • the condensed ring system containing seven carbon atoms [3, 2006.01]	49/633	•		 the condensed ring system containing
49/437		• • • • Camphor; Fenchone [3, 2006.01]				eight or nine carbon atoms [3, 2006.01]
		• • • the condensed ring system containing	49/637	•	• •	5
		eight or nine carbon atoms [3, 2006.01]	40 / 6 40			carbon atoms [3, 2006.01]
49/447	• •	• • • the condensed ring system containing ten				 having three rings [3, 2006.01] ving unsaturation outside the ring [3, 2006.01]
49/453		carbon atoms [3, 2006.01] • • having three rings [3, 2006.01]	49/653			polycyclic [3, 2006.01]
		containing halogen [3, 2006.01]	49/657			ntaining six-membered aromatic
		a keto group being part of a six-membered				gs [3, 2006.01]
		ring [3, 2006.01]	49/665	•		a keto group being part of a condensed ring
		• polycyclic [3, 2006.01]	49/67			system [3, 2006.01] • having two rings, e.g. tetralones [3, 2006.01]
49/473	• •	 a keto group being part of a condensed ring system [3, 2006.01] 				 having two rings, e.g. tetralones [3, 2006.01] having three rings [3, 2006.01]
49/477		• • • having two rings [3, 2006.01]				having unsaturation outside the aromatic
		• • • having three rings [3, 2006.01]				rings [3, 2006.01]
		containing hydroxy groups [3, 2006.01]				ntaining halogen [3, 2006.01]
49/493	• •	• a keto group being part of a three- to five-	49/693	•	• •	polycyclic [3, 2006.01]
		membered ring [3, 2006.01]				

49/697	•	• containing six-membered aromatic	49/90	• Ketene, i.e. C ₂ H ₂ O [3, 2006.01]
40 / 702		rings [3, 2006.01]	49/92	• Ketonic chelates [3, 2006.01]
		 containing hydroxy groups [3, 2006.01] a keto group being part of a three- to five- 	50/00	Quinones [3, 2006.01]
40 /710		membered ring [3, 2006.01]		Note(s) [3]
49/713		a keto group being part of a six-membered ring [3, 2006.01]		In this group, quinhydrones are classified according to their quinoid part.
49/717	•	 a keto group being part of a seven- to twelve- membered ring [3, 2006.01] 	50/02	• with monocyclic quinoid structure [3, 2006.01]
49/723		• • polycyclic [3, 2006.01]	50/04	• Benzoquinones, i.e. C ₆ H ₄ O ₂ [3, 2006.01]
49/727		• • a keto group being part of a condensed ring	50/06	with unsaturation outside the quinoid
15/ / 2/		system [3, 2006.01]		structure [3, 2006.01]
49/733	•	• • • having two rings [3, 2006.01]	50/08	• with polycyclic non-condensed quinoid
49/737		• • • having three rings [3, 2006.01]	50/10	structure [3, 2006.01]the quinoid structure being part of a condensed ring
49/743	•	 having unsaturation outside the rings, e.g. humulones, lupulones [3, 2006.01] 		system containing two rings [3, 2006.01]
49/747	•	containing six-membered aromatic	50/12 50/14	 Naphthoquinones, i.e. C₁₀H₆O₂ [3, 2006.01] with unsaturation outside the ring system, e.g.
		rings [3, 2006.01]		vitamin K ₁ [3, 2006.01]
49/753	•	 containing ether groups, containing ether gr	50/16	 the quinoid structure being part of a condensed ring system containing three rings [3, 2006.01]
		,o-	50/18	• • Anthraquinones, i.e. C ₁₄ H ₈ O ₂ [3, 2006.01]
		-c , o-c	50/20	• with unsaturation outside the ring
		O-C groups, or O-C groups [3, 2006.01]	50/22	system [3, 2006.01] the quinoid structure being part of a condensed ring
49/755	•		30/22	system containing four or more rings [3, 2006.01]
		system with two or three rings, at least one ring being a six-membered aromatic	50/24	• containing halogen [3, 2006.01]
		ring [3, 2006.01]	50/26	 containing groups having oxygen atoms singly bound
49/757	•	• containing —CHO groups [3, 2006.01]		to carbon atoms [3, 2006.01]
49/76	•	Ketones containing a keto group bound to a six-	50/28	• • with monocyclic quinoid structure [3, 2006.01]
		membered aromatic ring (compounds having a keto	50/30	 with polycyclic non-condensed quinoid structure [3, 2006.01]
		group being part of a condensed ring system and being bound to a six-membered aromatic ring	50/32	 the quinoid structure being part of a condensed
		C07C 49/657-C07C 49/757) [1, 2006.01]	5075 2	ring system having two rings [3, 2006.01]
49/78		• Acetophenone [1, 2006.01]	50/34	• • the quinoid structure being part of a condensed
49/782		• polycyclic [3, 2006.01]		ring system having three rings [3, 2006.01]
49/784	•	 with all keto groups bound to a non-condensed ring [3, 2006.01] 	50/36	 the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01]
		• • • Benzophenone [3, 2006.01]	50/38	• containing —CHO or non-quinoid keto
49/788	•	 with keto groups bound to a condensed ring system [3, 2006.01] 		groups [3, 2006.01]
49/792	•	containing rings other than six-membered	51/00	Preparation of carboxylic acids or their salts, halides, or anhydrides [1, 2, 2006.01]
		aromatic rings [3, 2006.01]	51/02	• from salts of carboxylic acids [1, 2006.01]
49/794	•	• having unsaturation outside an aromatic	51/04	• from carboxylic acid halides [1, 2006.01]
49/796		ring [3, 2006.01] • polycyclic [3, 2006.01]	51/06	• from carboxylic acid amides [1, 2006.01]
49/798		containing rings other than six-membered	51/08	• from nitriles [1, 2006.01]
.57756		aromatic rings [3, 2006.01]	51/083	• from carboxylic acid anhydrides [3, 2006.01]
49/80	•	 containing halogen [1, 2006.01] 	51/087	• • by hydrolysis [3, 2006.01]
49/807	•	 all halogen atoms bound to the 	51/09	from carboxylic acid esters or lactones (cappayification of carboxylic acid esters)
40 /04 0		ring [3, 2006.01]		(saponification of carboxylic acid esters C07C 27/02) [1, 2006.01]
49/813 49/82		polycyclic [3, 2006.01]containing hydroxy groups [1, 3, 2006.01]	51/093	• by hydrolysis of —CX ₃ groups, X being
49/825		 containing hydroxy groups [1, 3, 2006.01] all hydroxy groups bound to the 		halogen [3, 2006.01]
		ring [3, 2006.01]	51/097	 from or <u>via</u> nitro-substituted organic compounds [3, 2006.01]
49/83 49/835	•	polycyclic [3, 2006.01]having unsaturation outside an aromatic	51/10	• by reaction with carbon monoxide [1, 2006.01]
49/033		ring [3, 2006.01]	51/12	 on an oxygen-containing group in organic compounds, e.g. alcohols [1, 2006.01]
49/84	•	• containing ether groups,	51/14	 on a carbon-to-carbon unsaturated bond in organic compounds [1, 3, 2006.01]
		U- /u-c	51/145	 with simultaneous oxidation [3, 2006.01]
		-c , o-c	51/15	• by reaction of organic compounds with carbon
		0- -C-0-C		dioxide, e.g. Kolbe-Schmitt synthesis [2, 2006.01]
49/86	•	• containing —CHO groups [3, 2006.01]	51/16	 by oxidation (C07C 51/145 takes precedence) [1, 3, 2006.01]
49/88	•	Ketenes; Dimeric ketenes [3, 2006.01]		precedence) [1, 3, 2000.01]

	• • with molecular oxygen [3, 2006.01]	51/54	Preparation of carboxylic acid anhydrides (by
	• • • of saturated hydrocarbyl groups [3, 2006.01]		oxidation C07C 51/16) [1, 2006.01]
	• • • of paraffin waxes [3, 2006.01]	51/56	• • from organic acids, their salts, or their
51/23	 of oxygen-containing groups to carboxyl groups [3, 2006.01] 	51/567	esters [1, 2006.01]by reactions not involving the carboxylic acid
51/235	• • • of —CHO groups or primary alcohol groups [3, 2006.01]	51/573	anhydride group [3, 2006.01]Separation; Purification; Stabilisation; Use of
51/245	 • • of keto groups or secondary alcohol 		additives [3, 2006.01]
	groups [3, 2006.01]	51/58	• Preparation of carboxylic acid halides [1, 2006.01]
	 of unsaturated compounds containing no six- membered aromatic ring [3, 2006.01] 	51/60	• • by conversion of carboxylic acids or their anhydrides into halides with the same carboxylic acid part [2, 2006 01]
51/255	• • of compounds containing six-membered	51/62	acid part [3, 2006.01]by reactions not involving the carboxylic acid
	aromatic rings without ring-splitting [3, 2006.01]	31/02	halide group [3, 2006.01]
51/265	 having alkyl side chains which are oxidised to carboxyl groups [3, 2006.01] 	51/64	 Separation; Purification; Stabilisation; Use of additives [3, 2006.01]
51/27	 with oxides of nitrogen or nitrogen-containing 		•
517 2 7	mineral acids [3, 2006.01]	53/00	Saturated compounds having only one carboxyl
51/275	• • • of hydrocarbyl groups [3, 2006.01]		group bound to an acyclic carbon atom or
	• • with peroxy-compounds [3, 2006.01]	=0.400	hydrogen [1, 2006.01]
	 with halogen-containing compounds which may 	53/02	• Formic acid [1, 2006.01]
517 2 5	be formed in situ [3, 2006.01]	53/04	• • Preparation from carbon monoxide [1, 2006.01]
51/295	• • with inorganic bases, e.g. by alkali	53/06	• • Salts thereof [1, 2006.01]
	fusion [3, 2006.01]	53/08	 Acetic acid [1, 2006.01]
51/305	with sulfur or sulfur-containing	53/10	• • Salts thereof [1, 2006.01]
	compounds [3, 2006.01]	53/12	• Acetic anhydride (ketene C07C 49/90) [1, 2006.01]
51/31	 of cyclic compounds with ring- 	53/122	 Propionic acid [3, 2006.01]
	splitting [3, 2006.01]	53/124	 Acids containing four carbon atoms [3, 2006.01]
51/34	 by oxidation with ozone; by hydrolysis of ozonides [1, 3, 2006.01] 		 Acids containing more than four carbon atoms [3, 2006.01]
	 by reactions not involving formation of carboxyl groups [3, 2006.01] 	53/128	• the carboxyl group being bound to a carbon atom bound to at least two other carbon atoms, e.g. neo
51/353	 by isomerisation; by change of size of the carbon 	=0.4400	acids [3, 2006.01]
	skeleton [3, 2006.01]		• containing rings [3, 2006.01]
51/36	• • by hydrogenation of carbon-to-carbon unsaturated		• • monocyclic [3, 2006.01]
E4 /DCD	bonds [1, 3, 2006.01]		• • containing condensed ring systems [3, 2006.01]
51/363	 by introduction of halogen; by substitution of halogen atoms by other halogen 	53/138	• • • containing an adamantane ring
	atoms [3, 2006.01]	F2 /1F	system [3, 2006.01]
51/267	 by introduction of functional groups containing 	53/15	• containing halogen [3, 2006.01]
31/30/	oxygen only in singly bound form [3, 2006.01]	53/16	• • Halogenated acetic acids [1, 3, 2006.01]
51/373	 by introduction of functional groups containing 	53/18	• • • containing fluorine [1, 3, 2006.01]
31/3/3	oxygen only in doubly bound form [3, 2006.01]	53/19	 Acids containing three or more carbon atoms [3, 2006.01]
51/377	 by splitting-off hydrogen or functional groups; by 	F2/21	
0-7-0-1	hydrogenolysis of functional groups [3, 2006.01]	53/21	• • • containing fluorine [3, 2006.01]
51/38	• • • by decarboxylation [1, 3, 2006.01]	53/23	• • containing rings [3, 2006.01]
	Preparation of salts of carboxylic acids by conversion	53/38	• Acyl halides [3, 2006.01]
	of the acids or their salts into salts with the same	53/40	• • Acetyl halides [3, 2006.01]
	carboxylic acid part (preparation of soap C11D) [3, 2006.01]	53/42	• • of acids containing three or more carbon atoms [3, 2006.01]
51/42	 Separation; Purification; Stabilisation; Use of 	53/44	• • containing rings [3, 2006.01]
	additives [1, 3, 2006.01]	53/46	containing halogen outside the carbonyl halide
51/43	 by change of the physical state, e.g. 	=0.440	group [3, 2006.01]
	crystallisation [3, 2006.01]	53/48	• • • Halogenated acetyl halides [3, 2006.01]
51/44	• • • by distillation [1, 3, 2006.01]	53/50	• • • of acids containing three or more carbon
51/46	• • • by azeotropic distillation [1, 3, 2006.01]		atoms [3, 2006.01]
51/47	• • by solid-liquid treatment; by chemisorption [3, 2006.01]	55/00	Saturated compounds having more than one carboxyl group bound to acyclic carbon
	• • by liquid-liquid treatment [1, 2006.01]		atoms [1, 2, 2006.01]
51/487	• • by treatment giving rise to chemical modification	55/02	• Dicarboxylic acids [1, 2006.01]
	(by chemisorption C07C 51/47) [3, 2006.01]	55/06	• • Oxalic acid [1, 2006.01]
51/493	• • whereby carboxylic acid esters are	55/07	• • • Salts thereof [3, 2006.01]
	formed [3, 2006.01]	55/08	 Malonic acid [1, 2006.01]
51/50	• • Use of additives, e.g. for	55/10	• • Succinic acid [1, 2006.01]
	stabilisation [1, 3, 2006.01]	55/12	• • Glutaric acid [1, 2006.01]
		55/14	• • Adipic acid [1, 2006.01]
			and the second s

55/16	• • Pimelic acid [1, 2006.01]	• containing six-membered aromatic rings and other
55/18	• • Azelaic acid [1, 2006.01]	rings, e.g. cyclohexylphenylacetic acid [3, 2006.01]
55/20	• • Sebacic acid [1, 2006.01]	• • having unsaturation outside the aromatic
55/21	 Dicarboxylic acids having twelve carbon atoms [3, 2006.01] 	rings [3, 2006.01] 57/50 • containing condensed ring systems [3, 2006.01]
55/22	• Tricarboxylic acids [1, 2006.01]	57/52 • containing halogen [3, 2006.01]
55/24	 containing more than three carboxyl 	57/54 • • Halogenated acrylic or methacrylic acids [3, 2006.01]
EE /26	groups [1, 2006.01]	57/56 • • containing rings other than six-membered
55/26 55/28	containing rings [3, 2006.01]monocyclic [3, 2006.01]	aromatic rings [3, 2006.01]
55/30	 containing condensed ring systems [3, 2006.01] 	57/58 • • containing six-membered aromatic
55/32	• containing halogen [3, 2006.01]	rings [3, 2006.01]
55/34	• containing rings [3, 2006.01]	57/60 • • having unsaturation outside the
55/36	• Acyl halides [3, 2006.01]	rings [3, 2006.01]
55/38	• containing rings [3, 2006.01]	• • containing six-membered aromatic rings and other
55/40	containing halogen outside the carbonyl halide	rings [3, 2006.01]
	group [3, 2006.01]	57/64 • Acyl halides [3, 2006.01]
(00		57/66 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01]
57/00	Unsaturated compounds having carboxyl groups	57/68 • with only carbon-to-carbon triple bonds as
57/02	bound to acyclic carbon atoms [1, 2, 2006.01]with only carbon-to-carbon double bonds as	unsaturation [3, 2006.01]
	unsaturation [1, 2006.01]	• • containing rings other than six-membered
57/03	• • Monocarboxylic acids [3, 2006.01]	aromatic rings [3, 2006.01]
57/04	• • • Acrylic acid; Methacrylic acid [1, 3, 2006.01]	57/72 • • containing six-membered aromatic rings [3, 2006.01]
57/045	• • • • Preparation by oxidation in the liquid	57/74 • • containing six-membered aromatic rings and other
57/05	phase [3, 2006.01]	rings [3, 2006.01]
5//05	• • • Preparation by oxidation in the gaseous phase [3, 2006.01]	57/76 • • containing halogen outside the carbonyl halide
57/055	• • • • starting from unsaturated	groups [3, 2006.01]
	aldehydes [3, 2006.01]	59/00 Compounds having carboxyl groups bound to acyclic
57/065	• • • Preparation by splitting-off H—X, X being halogen, OR, or NR ₂ , R being hydrogen or a	carbon atoms and containing any of the groups OH,
	hydrocarbon group [3, 2006.01]	O-metal, —CHO, keto, ether, $C \subset C \subset C$ groups,
57/07	• • • • Separation; Purification; Stabilisation; Use	O-metal, —CHO, keto, ether, 5 5 groups,
	of additives [3, 2006.01]	.o-
57/075	• • • • Use of additives, e.g. for stabilisation [3, 2006.01]	-C-C - C
57/08	• • • Crotonic acid [1, 3, 2006.01]	59/01 • Saturated compounds having only one carboxyl
57/10	• • • Sorbic acid [1, 3, 2006.01]	group and containing hydroxy or O-metal
57/12	 • Straight chain carboxylic acids containing 	groups [3, 2006.01]
	eighteen carbon atoms [1, 3, 2006.01]	59/06 • • Glycolic acid [1, 3, 2006.01]
57/13	• • Dicarboxylic acids [3, 2006.01]	59/08 • • Lactic acid [1, 3, 2006.01]
57/145	• • • Maleic acid [3, 2006.01]	59/10 • • Polyhydroxy carboxylic acids [1, 2006.01]
57/15	• • • Fumaric acid [3, 2006.01]	59/105 • • having five or more carbon atoms, e.g. aldonic
57/155	• • • Citraconic acid [3, 2006.01]	acids [3, 2006.01]
57/16	• • • Muconic acid [1, 3, 2006.01]	59/11 • • containing rings [3, 2006.01]
57/18	 with only carbon-to-carbon triple bonds as unsaturation [1, 2006.01] 	59/115 • • containing halogen [3, 2006.01]
57/20	• Propiolic acid [1, 2006.01]	59/125 • Saturated compounds having only one carboxyl
57/22	Acetylene dicarboxylic acid [1, 2006.01]	group and containing ether groups,
57/24	Diacetylene or polyacetylene dicarboxylic	,0-
57/26	acids [1, 2006.01]containing rings other than six-membered aromatic	0-
57720	rings [3, 2006.01]	0- -C-0-C
57/28	containing an adamantane ring	59/13 • • containing rings [3, 2006.01]
E7/20	system [3, 2006.01]	59/135 • • containing halogen [3, 2006.01]
57/30	• containing six-membered aromatic rings [3, 2006.01]	• Saturated compounds having only one carboxyl
57/32 57/34	• Phenylacetic acid [3, 2006.01]	group and containing —CHO groups [3, 2006.01]
57/34	 containing more than one carboxyl group [3, 2006.01] 	59/153 • • Glyoxylic acid [3, 2006.01] 59/185 • Saturated compounds having only one carboxyl
57/36	• • • Phenylmalonic acid [3, 2006.01]	group and containing keto groups [3, 2006.01]
57/38	• • polycyclic [3, 2006.01]	59/19 • • Pyruvic acid [3, 2006.01]
57/40	• • containing condensed ring systems [3, 2006.01]	59/195 • • Acetoacetic acid [3, 2006.01]
57/42	 having unsaturation outside the rings [3, 2006.01] 	59/205 • • containing rings [3, 2006.01]
57/44	• • • Cinnamic acid [3, 2006.01]	59/21 • • containing halogen [3, 2006.01]

59/215 • • containing singly bound oxygen-contain groups [3, 2006.01]	ing 59/82	• • • the keto group being part of a ring [3, 2006.01]
59/225 • containing —CHO groups [3, 2006.01]	59/84	• • • containing six-membered aromatic
• Saturated compounds having more than one group [3, 2006.01]	e carboxyl 59/86	rings [3, 2006.01] • • containing six-membered aromatic rings and
59/245 • containing hydroxy or O-metal groups [3, 2006.01]	59/88	other rings [3, 2006.01] • • • containing halogen [3, 2006.01]
59/255 • • • Tartaric acid [3, 2006.01]	59/90	containing singly bound oxygen-containing
59/265 • • • Citric acid [3, 2006.01]	33730	groups [3, 2006.01]
59/285 • • • Polyhydroxy dicarboxylic acids havir more carbon atoms, e.g. saccharic	ng five or 59/92	• • • containing —CHO groups [3, 2006.01]
acids [3, 2006.01]	61/00	Compounds having carboxyl groups bound to
59/29 • • • containing rings [3, 2006.01]		carbon atoms of rings other than six-membered aromatic rings [1, 2006.01]
59/295 • • • containing halogen [3, 2006.01]	61/04	• Saturated compounds having a carboxyl group bound
59/305 • • containing ether groups, CCO-C groups		to a three- or four-membered ring [1, 3, 2006.01]
59/305 • • containing ether groups, CCO-C groups	61/06	Saturated compounds having a carboxyl group bound
.o-		to a five-membered ring [1, 3, 2006.01]
0- -C-0-C 0-C groups, or 0-C groups [3, 2	61/08	 Saturated compounds having a carboxyl group bound to a six-membered ring [1, 3, 2006.01]
`O-C groups, or	2006.01] 61/09	Completely hydrogenated benzenedicarboxylic
59/31 • • • containing rings [3, 2006.01]	01/03	acids [2, 3, 2006.01]
59/315 • • • containing halogen [3, 2006.01]	61/10	Saturated compounds having a carboxyl group bound
59/325 • • containing —CHO groups [3, 2006.01]		to a seven- to twelve-membered ring [1, 3, 2006.01]
59/347 • • containing keto groups [3, 2006.01]	61/12	 Saturated polycyclic compounds [1, 3, 2006.01]
59/353 • • • containing rings [3, 2006.01]	61/125	having a carboxyl group bound to a condensed
59/40 • Unsaturated compounds [3, 2006.01]59/42 • • containing hydroxy or O-metal	61/12	ring system [3, 2006.01]
groups [3, 2006.01]	61/13 61/135	having two rings [3, 2006.01]having three rings [3, 2006.01]
59/44 • • • Ricinoleic acid [3, 2006.01]	61/15	Saturated compounds containing
59/46 • • containing rings other than six-memb		halogen [3, 2006.01]
aromatic rings [3, 2006.01]	61/16	• Unsaturated compounds [1, 3, 2006.01]
59/48 • • • containing six-membered aromatic	61/20	 having a carboxyl group bound to a five-
rings [3, 2006.01]		membered ring [1, 3, 2006.01]
59/50 • • • • Mandelic acid [3, 2006.01] 59/52 • • • a hydroxy or O-metal group being bo	61/22	• • having a carboxyl group bound to a six-membered
carbon atom of a six-membered arom		ring [1, 3, 2006.01] • • Partially hydrogenated benzenedicarboxylic
ring [3, 2006.01]	01/24	acids [1, 3, 2006.01]
59/54 • • • containing six-membered aromatic rin	ngs and 61/26	 having a carboxyl group bound to a seven- to
other rings [3, 2006.01]		twelve-membered ring [1, 3, 2006.01]
59/56 • • • containing halogen [3, 2006.01]	61/28	• • polycyclic [1, 3, 2006.01]
59/58 • • containing ether groups, CCO groups	61/29	• • • having a carboxyl group bound to a condensed
Ω-	61/35	ring system [3, 2006.01] • having unsaturation outside the rings [3, 2006.01]
,o/o-c	61/37	Chrysanthemumic acid [3, 2006.01]
-c / o-c	61/39	containing six-membered aromatic
O-C groups, or O-C groups [3, 2	2006.01]	rings [3, 2006.01]
0- 0- 0- 0-C 0-C 0-C 0-C groups, or 0-C groups [3, 2] 59/60 • • • the non-carboxylic part of the ether be unsaturated [3, 2006.01]	eing 61/40	• • containing halogen [3, 2006.01]
unsaturated [3, 2006.01] 59/62 • • • containing rings other than six-memb	ered 62/00	Compounds having carboxyl groups bound to
aromatic rings [3, 2006.01]	cred 02/00	carbon atoms of rings other than six-membered
59/64 • • • containing six-membered aromatic		aromatic rings and containing any of the groups OH,
rings [3, 2006.01]		O-metal, —CHO, keto, ether,
59/66 • • • the non-carboxylic part of the ether containing six-membered aromatic		O-metal, —CHO, keto, ether, COO groups,
rings [3, 2006.01]	<u> </u>	0/0-C
59/68 • • • • the oxygen atom of the ether gro	oup being	-c-o-c
bound to a non-condensed six-n		`O-C groups, or
aromatic ring [3, 2006.01]	62/02	Saturated compounds containing hydroxy or O-metal
59/70 • • • • • Ethers of hydroxy-acetic acid [3, 2006.01]	CD /O *	groups [3, 2006.01]
59/72 • • • containing six-membered aromatic rin	62/04	• • with a six-membered ring [3, 2006.01]
other rings [3, 2006.01]	ngs and 62/06	• • polycyclic [3, 2006.01]
59/74 • • containing —CHO groups [3, 2006.01]		
59/76 • • containing keto groups [3, 2006.01]		
59/80 • • containing rings other than six-memb	ered	
aromatic rings [3, 2006.01]		

62/08	 Saturated compounds containing ether groups, 	63/40	• • • containing three or more carboxyl groups all
	,0-		bound to carbon atoms of the condensed ring
	`0- ⁻ \0-C		system [1, 3, 2006.01]
)- C<0- C-C groups, or 0-C groups, or 0-C	63/42	• • containing three or more rings [1, 3, 2006.01]
	O-C groups, O-C groups, or O-C	63/44	• • • containing one carboxyl
	groups [3, 2006.01]		group [1, 3, 2006.01]
62/10	 with a six-membered ring [3, 2006.01] 	63/46	 containing two carboxyl groups both bound
62/12	• • polycyclic [3, 2006.01]		to carbon atoms of the condensed ring
62/14	 having a carboxyl group on a condensed ring 		system [1, 3, 2006.01]
	system [3, 2006.01]	63/48	• • • containing three or more carboxyl groups all
62/16	 Saturated compounds containing —CHO 		bound to carbon atoms of the condensed ring
	groups [3, 2006.01]	CD / 40	system [1, 3, 2006.01]
62/18	 Saturated compounds containing keto 	63/49	• • containing rings other than six-membered
	groups [3, 2006.01]	60.764	aromatic rings [3, 2006.01]
62/20	 with a six-membered ring [3, 2006.01] 	63/64	• Monocyclic acids with unsaturation outside the
62/22	• • polycyclic [3, 2006.01]	62/66	aromatic ring [3, 2006.01]
62/24	 the keto group being part of a ring [3, 2006.01] 	63/66	 Polycyclic acids with unsaturation outside the aromatic rings [3, 2006.01]
62/26	 containing singly bound oxygen-containing 	63/68	• containing halogen [3, 2006.01]
	groups [3, 2006.01]		
62/28	 containing —CHO groups [3, 2006.01] 	63/70	• • Monocarboxylic acids [3, 2006.01]
62/30	• Unsaturated compounds [3, 2006.01]	63/72	• • Polycyclic acids [3, 2006.01]
62/32	 containing hydroxy or O-metal 	63/74	having unsaturation outside the aromatic
	groups [3, 2006.01]		rings [3, 2006.01]
	• • containing ether groups, CCCD- groups,	65/00	Compounds having carboxyl groups bound to
62/34	• • containing ether groups, COC groups,	05/00	carbon atoms of six-membered aromatic rings and
	,0-		containing any of the groups OH, O-metal, —CHO,
	,0- c/o-c		Ω
	-C _ O-C		,c,0C , 0-C
	0- -C-0-C		keto, ether, CCCO-C groups, O-C groups, or
62/36	• • containing —CHO groups [3, 2006.01]		.0-
62/38	• • containing keto groups [3, 2006.01]		_/o-c
63/00	Compounds having carboxyl groups bound to		`O-C groups [1, 2006.01]
63/00	carbon atoms of six-membered aromatic	65/01	'O-C groups [1, 2006.01] • containing hydroxy or O-metal groups [3, 2006.01]
	carbon atoms of six-membered aromatic rings [1, 2, 2006.01]	65/01 65/03	• containing hydroxy or O-metal groups [3, 2006.01]
63/04	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] • Monocyclic monocarboxylic acids [1, 2006.01]	65/01 65/03	containing hydroxy or O-metal groups [3, 2006.01]monocyclic and having all hydroxy or O-metal
63/04 63/06	 carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] 		 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01]
63/04 63/06 63/08	 carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Salts thereof [1, 2006.01] 	65/03 65/05	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01]
63/04 63/06 63/08 63/10	 carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Salts thereof [1, 2006.01] Halides thereof [1, 2006.01] 	65/03 65/05 65/10	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] Salicylic acid [1, 3, 2006.01]
63/04 63/06 63/08 63/10 63/14	 carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Salts thereof [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] 	65/03 65/05 65/10 65/105	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] Salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01]
63/04 63/06 63/08 63/10	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Salts thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] all carboxyl groups bound to carbon atoms of the	65/03 65/05 65/10	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] Salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring
63/04 63/06 63/08 63/10 63/14 63/15	 carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Salts thereof [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] all carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] 	65/03 65/05 65/10 65/105 65/11	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] Salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01]
63/04 63/06 63/08 63/10 63/14 63/15	 carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Salts thereof [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] all carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] 1,2-Benzenedicarboxylic acid [1, 3, 2006.01] 	65/03 65/05 65/10 65/105	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] Salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring
63/04 63/06 63/08 63/10 63/14 63/15	 carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Salts thereof [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] all carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] 1,2-Benzenedicarboxylic acid [1, 3, 2006.01] Salts thereof [1, 3, 2006.01] 	65/03 65/05 65/10 65/105 65/11	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] Salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01]
63/04 63/06 63/08 63/10 63/14 63/15	 carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Salts thereof [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] all carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] 1,2-Benzenedicarboxylic acid [1, 3, 2006.01] 	65/03 65/05 65/10 65/105 65/11	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] O-Hydroxy carboxylic acids [3, 2006.01] Salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two rings [3, 2006.01]
63/04 63/06 63/08 63/10 63/14 63/15 63/16 63/20	 carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Salts thereof [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] all carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] 1,2-Benzenedicarboxylic acid [1, 3, 2006.01] Salts thereof [1, 3, 2006.01] 	65/03 65/05 65/10 65/105 65/11	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] Salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two
63/04 63/06 63/08 63/10 63/14 63/15 63/20 63/20	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Salts thereof [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] all carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] 1,2-Benzenedicarboxylic acid [1, 3, 2006.01] 2,3 Salts thereof [1, 3, 2006.01] Halides thereof [1, 3, 2006.01]	65/03 65/05 65/10 65/105 65/11	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] O-Hydroxy carboxylic acids [3, 2006.01] Salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two rings [3, 2006.01] containing rings other than six-membered
63/04 63/06 63/08 63/10 63/14 63/15 63/16 63/20 63/22 63/24	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Salts thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] all carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] 1,2-Benzenedicarboxylic acid [1, 3, 2006.01] Salts thereof [1, 3, 2006.01] Halides thereof [1, 3, 2006.01]	65/03 65/05 65/10 65/105 65/11 65/15	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] O-Hydroxy carboxylic acids [3, 2006.01] Salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two rings [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01]
63/04 63/06 63/08 63/10 63/14 63/15 63/16 63/20 63/22 63/24 63/26	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Salts thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] all carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] 1,2-Benzenedicarboxylic acid [1, 3, 2006.01] Salts thereof [1, 3, 2006.01] Halides thereof [1, 3, 2006.01] Halides thereof [1, 3, 2006.01] 1,4-Benzenedicarboxylic acid [1, 3, 2006.01]	65/03 65/05 65/10 65/105 65/11 65/15	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] Salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two rings [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic ring [3, 2006.01]
63/04 63/06 63/08 63/10 63/14 63/15 63/16 63/20 63/22 63/24 63/26 63/28	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Salts thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] all carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] 1,2-Benzenedicarboxylic acid [1, 3, 2006.01] Network of the six-membered [1, 3, 2006.01] Halides thereof [1, 3, 2006.01] Halides thereof [1, 3, 2006.01] Salts thereof [1, 3, 2006.01] Salts thereof [1, 3, 2006.01]	65/03 65/05 65/10 65/105 65/11 65/15	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] Salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two rings [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic ring [3, 2006.01]
63/04 63/06 63/08 63/10 63/14 63/15 63/26 63/22 63/24 63/26 63/28 63/30	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Salts thereof [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] all carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] 1,2-Benzenedicarboxylic acid [1, 3, 2006.01] Salts thereof [1, 3, 2006.01] Halides thereof [1, 3, 2006.01] 1,3-Benzenedicarboxylic acid [1, 3, 2006.01] 1,4-Benzenedicarboxylic acid [1, 3, 2006.01] Salts thereof [1, 3, 2006.01] Halides thereof [1, 3, 2006.01] Monocyclic tricarboxylic acids [3, 2006.01]	65/03 65/05 65/10 65/105 65/11 65/15	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] Salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two rings [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic ring [3, 2006.01]
63/04 63/06 63/08 63/10 63/14 63/15 63/16 63/20 63/22 63/24 63/28 63/30 63/307	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Salts thereof [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] all carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] 1,2-Benzenedicarboxylic acid [1, 3, 2006.01] Salts thereof [1, 3, 2006.01] Halides thereof [1, 3, 2006.01] 1,3-Benzenedicarboxylic acid [1, 3, 2006.01] Salts thereof [1, 3, 2006.01] Halides thereof [1, 3, 2006.01]	65/03 65/05 65/10 65/105 65/11 65/15 65/17	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] Salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two rings [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic ring [3, 2006.01] containing ether groups,
63/04 63/06 63/08 63/10 63/14 63/15 63/16 63/20 63/22 63/24 63/28 63/30 63/307	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Benzoic acid [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxy	65/03 65/05 65/10 65/105 65/11 65/15 65/17	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] Salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two rings [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic ring [3, 2006.01] containing ether groups,
63/04 63/06 63/08 63/10 63/14 63/15 63/20 63/22 63/24 63/26 63/28 63/30 63/307 63/313	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Benzoic acid [1, 2006.01] Benzoic acid [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] all carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] Lagrange acid [1, 3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups [1, 3, 2006.01] All carboxyl groups [1, 3, 2006.01] All carboxylic acid [1, 3, 2006.01] All carboxylic acid [1, 3, 2006.01] Monocyclic tricarboxylic acids [3, 2006.01] Monocyclic acids containing more than three carboxyl groups [3, 2006.01] Polycyclic acids [2, 3, 2006.01]	65/03 65/05 65/10 65/105 65/11 65/15 65/17	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two rings [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic ring [3, 2006.01] containing ether groups,
63/04 63/06 63/08 63/10 63/14 63/15 63/20 63/22 63/24 63/26 63/28 63/30 63/307 63/313	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Benzoic acid [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] All carboxyl groups [1, 3, 2006.01] All carboxyl groups [1, 3, 2006.01] All carboxyl acid [1, 3, 2006.01] All carboxyl acid [1, 3, 2006.01] All carboxyl acid [1, 3, 2006.01] Monocyclic tricarboxylic acids [3, 2006.01] Monocyclic acids containing more than three carboxyl groups [3, 2006.01]	65/03 65/05 65/10 65/105 65/11 65/15 65/17	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two rings [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic ring [3, 2006.01] containing ether groups,
63/04 63/06 63/08 63/10 63/14 63/15 63/20 63/22 63/24 63/26 63/28 63/30 63/307 63/313	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Salts thereof [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] all carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] 1,2-Benzenedicarboxylic acid [1, 3, 2006.01] 1,2-Benzenedicarboxylic acid [1, 3, 2006.01] 1,3-Benzenedicarboxylic acid [1, 3, 2006.01] 1,4-Benzenedicarboxylic acid [1, 3, 2006.01] 1,4-Benzenedicarboxylic acid [1, 3, 2006.01] Monocyclic tricarboxylic acids [3, 2006.01] Monocyclic tricarboxylic acids [3, 2006.01] Monocyclic acids containing more than three carboxyl groups [3, 2006.01] With all carboxyl groups bound to non-condensed rings [3, 2006.01]	65/03 65/05 65/10 65/105 65/11 65/15 65/17	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] Salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two rings [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic ring [3, 2006.01] containing ether groups,
63/04 63/06 63/08 63/10 63/14 63/15 63/20 63/22 63/24 63/26 63/28 63/30 63/307 63/313 63/33 63/331	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Salts thereof [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] all carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] 1,2-Benzenedicarboxylic acid [1, 3, 2006.01] 1,2-Benzenedicarboxylic acid [1, 3, 2006.01] 1,3-Benzenedicarboxylic acid [1, 3, 2006.01] 1,3-Benzenedicarboxylic acid [1, 3, 2006.01] 1,4-Benzenedicarboxylic acid [1, 3, 2006.01] Monocyclic tricarboxylic acids [3, 2006.01] Monocyclic tricarboxylic acids [3, 2006.01] Monocyclic acids containing more than three carboxyl groups [3, 2006.01] Polycyclic acids [2, 3, 2006.01] with all carboxyl groups bound to non-condensed rings [3, 2006.01]	65/03 65/05 65/10 65/105 65/11 65/15 65/17 65/19	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] Salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two rings [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic ring [3, 2006.01] containing ether groups,
63/04 63/06 63/08 63/10 63/14 63/15 63/20 63/22 63/24 63/26 63/28 63/30 63/307 63/313 63/331	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Salts thereof [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] all carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] 1,2-Benzenedicarboxylic acid [1, 3, 2006.01] 1,2-Benzenedicarboxylic acid [1, 3, 2006.01] 1,3-Benzenedicarboxylic acid [1, 3, 2006.01] 1,4-Benzenedicarboxylic acid [1, 3, 2006.01] 1,4-Benzenedicarboxylic acid [1, 3, 2006.01] Monocyclic tricarboxylic acids [3, 2006.01] Monocyclic tricarboxylic acids [3, 2006.01] Monocyclic acids containing more than three carboxyl groups [3, 2006.01] With all carboxyl groups bound to non-condensed rings [3, 2006.01]	65/03 65/05 65/10 65/105 65/11 65/15 65/17 65/19	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] Salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two rings [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic ring [3, 2006.01] containing ether groups, groups, or O-C groups [3, 2006.01] polycyclic [3, 2006.01]
63/04 63/06 63/08 63/10 63/14 63/15 63/20 63/22 63/24 63/26 63/28 63/30 63/307 63/313 63/331	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Benzoic acid [1, 2006.01] Benzoic acid [1, 2006.01] Benzoic acid [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] Pall carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] Pall carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] Pall carboxyl groups [1, 3, 2006.01] Halides thereof [1, 3, 2006.01] Halides thereof [1, 3, 2006.01] Halides thereof [1, 3, 2006.01] Monocyclic tricarboxylic acids [3, 2006.01] Monocyclic acids containing more than three carboxyl groups [3, 2006.01] Monocyclic acids [2, 3, 2006.01] With all carboxyl groups bound to non-condensed rings [3, 2006.01] With carboxyl groups bound to condensed ring systems [2, 3, 2006.01]	65/03 65/05 65/10 65/105 65/11 65/15 65/17 65/19	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] Salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two rings [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic ring [3, 2006.01] containing ether groups, concord groups, polycyclic [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered
63/04 63/06 63/08 63/10 63/14 63/15 63/16 63/20 63/22 63/24 63/28 63/30 63/307 63/313 63/331 63/333 63/331	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Benzoic acid [1, 2006.01] Benzoic acid [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] all carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] Fig. Salts thereof [1, 3, 2006.01] Monocyclic acids rereof [1, 3, 2006.01] Monocyclic tricarboxylic acids [3, 2006.01] Monocyclic acids containing more than three carboxyl groups [3, 2006.01] Polycyclic acids [2, 3, 2006.01] Polycyclic acids [2, 3, 2006.01] with all carboxyl groups bound to non-condensed rings [3, 2006.01] with carboxyl groups bound to condensed ring systems [2, 3, 2006.01]	65/03 65/05 65/10 65/105 65/11 65/15 65/17 65/19 65/21	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] O-Hydroxy carboxylic acids [3, 2006.01] Salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two rings [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic ring [3, 2006.01] containing ether groups, groups, or O-C groups [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01]
63/04 63/06 63/08 63/10 63/14 63/15 63/16 63/20 63/22 63/24 63/28 63/30 63/307 63/313 63/331 63/333 63/337	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Benzoic acid [1, 2006.01] Benzoic acid [1, 2006.01] Benzoic acid [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] Pall carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] Pall carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] Pall carboxyl groups [1, 3, 2006.01] Halides thereof [1, 3, 2006.01] Halides thereof [1, 3, 2006.01] Halides thereof [1, 3, 2006.01] Monocyclic tricarboxylic acids [3, 2006.01] Monocyclic acids containing more than three carboxyl groups [3, 2006.01] Monocyclic acids [2, 3, 2006.01] With all carboxyl groups bound to non-condensed rings [3, 2006.01] With carboxyl groups bound to condensed ring systems [2, 3, 2006.01]	65/03 65/05 65/10 65/105 65/11 65/15 65/17 65/19 65/21	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two rings [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic ring [3, 2006.01] containing ether groups, concord groups, or O-C groups [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic
63/04 63/06 63/08 63/10 63/14 63/15 63/16 63/20 63/22 63/24 63/28 63/30 63/307 63/313 63/331 63/333 63/337	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Benzoic acid [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] Salts thereof [1, 3, 2006.01] Halides thereof [1, 3, 2006.01] Monocyclic tricarboxylic acid [1, 3, 2006.01] Monocyclic tricarboxylic acids [3, 2006.01] Monocyclic acids containing more than three carboxyl groups [3, 2006.01] Polycyclic acids [2, 3, 2006.01] Polycyclic acids [2, 3, 2006.01] with all carboxyl groups bound to non-condensed rings [3, 2006.01] with carboxyl groups bound to condensed ring systems [2, 3, 2006.01] containing two rings [1, 3, 2006.01] containing two rings [1, 3, 2006.01]	65/03 65/05 65/10 65/105 65/11 65/15 65/17 65/19 65/21	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two rings [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic ring [3, 2006.01] containing ether groups, concord groups, or O-C groups [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic rings [3, 2006.01] having unsaturation outside the aromatic rings [3, 2006.01]
63/04 63/06 63/08 63/10 63/14 63/15 63/16 63/20 63/22 63/24 63/28 63/30 63/307 63/313 63/333 63/337 63/333 63/337	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] Lall carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] Lall carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] Lall carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] Lall carboxyl groups [1, 3, 2006.01] Lall carboxylic acid [1, 3, 2006.01] Monocyclic tricarboxylic acid [1, 3, 2006.01] Monocyclic acids containing more than three carboxyl groups [3, 2006.01] Monocyclic acids [2, 3, 2006.01] Monocyclic acids [2, 3, 2006.01] With all carboxyl groups bound to non-condensed rings [3, 2006.01] With carboxyl groups bound to condensed ring systems [2, 3, 2006.01] With carboxyl groups bound to condensed ring systems [2, 3, 2006.01] Containing two rings [1, 3, 2006.01] Containing one carboxyl group [1, 3, 2006.01]	65/03 65/05 65/10 65/105 65/11 65/15 65/17 65/19 65/21	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two rings [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic ring [3, 2006.01] containing ether groups, CO-C groups, O-C O-C groups, or O-C groups [3, 2006.01] polycyclic [3, 2006.01] having unsaturation outside the aromatic rings [3, 2006.01] having unsaturation outside the aromatic rings [3, 2006.01] having unsaturation outside the aromatic rings [3, 2006.01] containing —CHO groups [3, 2006.01]
63/04 63/06 63/08 63/10 63/14 63/15 63/16 63/20 63/22 63/24 63/28 63/30 63/307 63/313 63/333 63/337 63/333 63/337	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] All carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] Halides thereof [1, 3, 2006.01] Monocyclic tricarboxylic acids [3, 2006.01] Monocyclic tricarboxylic acids [3, 2006.01] Monocyclic acids containing more than three carboxyl groups [3, 2006.01] Monocyclic acids [2, 3, 2006.01] With all carboxyl groups bound to non-condensed rings [3, 2006.01] With all carboxyl groups bound to condensed rings [3, 2006.01] With carboxyl groups bound to condensed ring systems [2, 3, 2006.01] Containing two rings [1, 3, 2006.01] Containing two rings [1, 3, 2006.01] Containing one carboxyl groups both bound	65/03 65/03 65/10 65/10 65/10 65/11 65/15 65/17 65/19 65/21 65/24 65/26 65/28 65/30 65/32	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two rings [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic ring [3, 2006.01] containing ether groups, CO-C groups, O-C groups, or O-C groups [3, 2006.01] polycyclic [3, 2006.01] containing ings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic rings [3, 2006.01] having unsaturation outside the aromatic rings [3, 2006.01] containing —CHO groups [3, 2006.01] containing keto groups [3, 2006.01]
63/04 63/06 63/08 63/10 63/14 63/15 63/16 63/20 63/22 63/24 63/28 63/30 63/307 63/313 63/333 63/337 63/333 63/337	carbon atoms of six-membered aromatic rings [1, 2, 2006.01] Monocyclic monocarboxylic acids [1, 2006.01] Benzoic acid [1, 2006.01] Halides thereof [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] Monocyclic dicarboxylic acids [1, 2006.01] In all carboxyl groups bound to carbon atoms of the six-membered aromatic ring [3, 2006.01] Let 1,2-Benzenedicarboxylic acid [1, 3, 2006.01] Let 1,3-Benzenedicarboxylic acid [1, 3, 2006.01] Let 1,3-Benzenedicarboxylic acid [1, 3, 2006.01] Let 1,4-Benzenedicarboxylic acid [1, 3, 2006.01] Let 1,4-Benzenedicarboxylic acid [1, 3, 2006.01] Monocyclic tricarboxylic acids [3, 2006.01] Monocyclic tricarboxylic acids [3, 2006.01] Monocyclic acids containing more than three carboxyl groups [3, 2006.01] Monocyclic acids [2, 3, 2006.01] With all carboxyl groups bound to non-condensed rings [3, 2006.01] With all carboxyl groups bound to condensed rings [3, 2006.01] With carboxyl groups bound to condensed ring systems [2, 3, 2006.01] Containing two rings [1, 3, 2006.01] Containing two rings [1, 3, 2006.01] Containing two rings [1, 3, 2006.01] Containing two carboxyl groups both bound to carbon atoms of the condensed ring	65/03 65/03 65/05 65/10 65/105 65/11 65/15 65/17 65/19 65/21 65/24 65/26 65/28 65/30 65/32 65/34	 containing hydroxy or O-metal groups [3, 2006.01] monocyclic and having all hydroxy or O-metal groups bound to the ring [3, 2006.01] o-Hydroxy carboxylic acids [3, 2006.01] salicylic acid [1, 3, 2006.01] polycyclic [3, 2006.01] with carboxyl groups on a condensed ring system containing two rings [3, 2006.01] with carboxyl groups on a condensed ring system containing more than two rings [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic ring [3, 2006.01] containing ether groups, groups, or O-C groups [3, 2006.01] polycyclic [3, 2006.01] containing ings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside the aromatic rings [3, 2006.01] containing —CHO groups [3, 2006.01] containing keto groups [3, 2006.01] polycyclic [3, 2006.01] polycyclic [3, 2006.01]

65/38	 having unsaturation outside the aromatic rings [3, 2006.01] 	67/307 • by introduction of halogen; by substitution of halogen atoms by other halogen
65/40	 containing singly bound oxygen-containing groups [3, 2006.01] 	atoms [3, 2006.01] 67/31 • by introduction of functional groups containing
65/42	• • containing —CHO groups [3, 2006.01]	oxygen only in singly bound form [3, 2006.01]
66/00	Quinone carboxylic acids [2, 2006.01]	67/313 • • by introduction of doubly bound oxygen containing functional groups, e.g. carboxyl
66/02	• Anthraquinone carboxylic acids [2, 2006.01]	groups [3, 2006.01]
67/00	Preparation of carboxylic acid esters [1, 2006.01]	67/317 • • by splitting-off hydrogen or functional groups; by
07700		hydrogenolysis of functional groups [3, 2006.01] 67/32 • • Decarboxylation [2, 3, 2006.01]
	Note(s) [3]	67/32 • • • by elimination of functional groups containing
	In this group, lactones used as reactants are considered as being esters.	oxygen only in singly bound form [3, 2006.01 67/333 • • by isomerisation; by change of size of the carbon
67/02	• by interreacting ester groups, i.e.	skeleton (introduction or elimination of carboxyl
67/02	transesterification [1, 2006.01]	groups C07C 67/313, C07C 67/32) [3, 2006.01]
67/03	 by reacting an ester group with a hydroxy group [2, 2006.01] 	-C-0-C-
67/035	by reacting carboxylic acids or symmetrical	67/34 • • • Migration of Ü groups in the
	anhydrides with saturated hydrocarbons [3, 2006.01]	molecule [2, 3, 2006.01]
67/04	by reacting carboxylic acids or symmetrical	67/343 • • • by increase in the number of carbon
	anhydrides onto unsaturated carbon-to-carbon bonds [1, 2, 2006.01]	atoms [3, 2006.01] 67/347 • • • by addition to unsaturated carbon-to-carbon
67/05	• • with oxidation [2, 3, 2006.01]	bonds [3, 2006.01]
67/055	• • • in the presence of platinum group metals or	67/36 • by reaction with carbon monoxide or formates
	their compounds [3, 2006.01]	(C07C 67/02, C07C 67/03, C07C 67/10 take
67/08	 by reacting carboxylic acids or symmetrical 	precedence) [2, 2006.01]
	anhydrides with the hydroxy or O-metal group of	67/37 • • by reaction of ethers with carbon monoxide [2, 2006.01]
67/10	organic compounds [2, 2006.01]by reacting carboxylic acids or symmetrical	67/38 • • by addition to an unsaturated carbon-to-carbon
07710	anhydrides with ester groups or with a carbon-	bond [2, 2006.01]
	halogen bond [2, 2006.01]	67/39 • by oxidation of groups which are precursors for the
67/11	• • being mineral ester groups [3, 2006.01]	acid moiety of the ester [3, 2006.01]
67/12	• from asymmetrical anhydrides [2, 2006.01]	67/40 • • by oxidation of primary alcohols [2, 3, 2006.01]
67/14 67/16	from carboxylic acid halides [2, 2006.01]from carboxylic acids, esters or anhydrides wherein	67/42 • by oxidation of secondary alcohols or ketones [2, 3, 2006.01]
0//10	one oxygen atom has been replaced by a sulfur,	67/44 • by oxidation-reduction of aldehydes, e.g. Tishchenk
	selenium or tellurium atom [2, 2006.01]	reaction [2, 2006.01]
67/18	by conversion of a group containing nitrogen into an	67/46 • from ketenes or polyketenes [2, 2006.01]
67/20	ester group [2, 2006.01] • from amides or lactams [2, 2006.01]	67/465 • by oligomerisation [3, 2006.01] 67/47 • by telomerisation (macromolecular compounds
67/22	• • from nitriles [2, 2006.01]	• by telomerisation (macromolecular compounds C08) [3, 2006.01]
67/24	by reacting carboxylic acids or derivatives thereof	67/475 • by splitting of carbon-to-carbon bonds and
	with a carbon-to-oxygen ether bond, e.g. acetal,	redistribution, e.g. disproportionation or migration o
o= 100	tetrahydrofuran [2, 2006.01]	-cooç-
67/26	• • with an oxirane ring [2, 2006.01]	groups between different molecules [3, 2006.01]
67/27 67/28	from ortho-esters [3, 2006.01]by modifying the hydroxylic moiety of the ester, such	67/48 • Separation; Purification; Stabilisation; Use of
07720	modification not being an introduction of an ester	additives [2, 3, 2006.01]
	group [2, 2006.01]	67/52 • by change in the physical state, e.g.
67/283	• • by hydrogenation of unsaturated carbon-to-carbon	crystallisation [3, 2006.01] 67/54 • • • by distillation [3, 2006.01]
67/287	bonds [3, 2006.01]by introduction of halogen; by substitution of	67/56 • • by distillation [3, 2006.01]
0//20/	halogen atoms by other halogen	chemisorption [3, 2006.01]
	atoms [3, 2006.01]	67/58 • • by liquid-liquid treatment [3, 2006.01]
67/29	by introduction of oxygen-containing functional 2000 011	67/60 • by treatment giving rise to chemical modification
67/293	groups [3, 2006.01] • by isomerisation; by change of size of the carbon	(by chemisorption C07C 67/56) [3, 2006.01]
0//293	skeleton [3, 2006.01]	67/62 • Use of additives, e.g. for stabilisation [3, 2006.01
67/297	 by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] 	68/00 Preparation of esters of carbonic or haloformic acids [2, 2006.01, 2020.01]
67/30	 by modifying the acid moiety of the ester, such 	• from carbon monoxide and oxygen [2020.01]
	modification not being an introduction of an ester	68/02 • from phosgene or haloformates [2, 2006.01]
CE /000	group [2, 2006.01]	68/04 • from carbon dioxide or inorganic
67/303	 by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] 	carbonates [2, 2006.01] 68/06 • from organic carbonates [2, 2006.01, 2020.01]
	oongo [0, 2000,01]	68/065 • from alkylene carbonates [2020.01]
		1011 diffyrenc curbonates [2020.01]

68/08 • Purification; Separation; Stabilisation [2, 2006.01] esterified with trihydroxylic 69/30 compounds [1, 2006.01] 69/00 Esters of carboxylic acids; Esters of carbonic or 69/33 esterified with hydroxy compounds having haloformic acids [1, 2006.01] more than three hydroxy groups [2, 2006.01] 69/34 Esters of acyclic saturated polycarboxylic acids Note(s) [5] having an esterified carboxyl group bound to an Attention is drawn to Note (6) following the title of this acyclic carbon atom [1, 3, 2006.01] subclass. esterified with unsaturated alcohols having the 69/347 69/003 Esters of saturated alcohols having the esterified esterified hydroxy group bound to an acyclic hydroxy group bound to an acyclic carbon carbon atom [3, 2006.01] atom [3, 2006.01] esterified with a hydroxy compound having the 69/353 69/007 • Esters of unsaturated alcohols having the esterified esterified hydroxy group bound to a carbon atom hydroxy group bound to an acyclic carbon of a six-membered aromatic ring [3, 2006.01] atom [3, 2006.01] Oxalic acid esters [1, 3, 2006.01] 69/36 69/01 Vinvl esters [3, 2006.01] 69/38 Malonic acid esters [1, 3, 2006.01] 69/013 • Esters of alcohols having the esterified hydroxy 69/40 Succinic acid esters [1, 3, 2006.01] group bound to a carbon atom of a ring other than a 69/42 Glutaric acid esters [1, 3, 2006.01] six-membered aromatic ring [3, 2006.01] 69/44 Adipic acid esters [1, 3, 2006.01] 69/017 • Esters of hydroxy compounds having the esterified 69/46 Pimelic acid esters [1, 3, 2006.01] hydroxy group bound to a carbon atom of a sixmembered aromatic ring [3, 2006.01] 69/48 Azelaic acid esters [1, 3, 2006.01] 69/50 Sebacic acid esters [1, 3, 2006.01] Note(s) [3] 69/52 Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic Esters having a variably-specified acid moiety, i.e. covered by more than one of groups C07C 69/02, carbon atom [1, 3, 2006.01] C07C 69/34, C07C 69/52, C07C 69/608, C07C 69/612, 69/527 of unsaturated hydroxy compounds [3, 2006.01] C07C 69/62, C07C 69/66, C07C 69/74, C07C 69/76, Monocarboxylic acid esters having only one 69/533 C07C 69/95, C07C 69/96, are covered by groups carbon-to-carbon double bond [3, 2006.01] C07C 69/003-C07C 69/017 according to their 69/54 Acrylic acid esters; Methacrylic acid hydroxylic moiety. esters [1, 3, 2006.01] 69/02 • Esters of acyclic saturated monocarboxylic acids Crotonic acid esters; Vinyl acetic acid 69/56 having the carboxyl group bound to an acyclic carbon esters [1, 3, 2006.01] atom or to hydrogen [1, 2006.01] Esters of straight chain acids with eighteen 69/58 esterified with unsaturated alcohols having the 69/025 carbon atoms in the acid moiety [1, 3, 2006.01] esterified hydroxy group bound to an acyclic Monocarboxylic acid esters having at least two 69/587 carbon atom [3, 2006.01] carbon-to-carbon double bonds [3, 2006.01] 69/03 esterified with alcohols having the esterified 69/593 Dicarboxylic acid esters having only one carbonhydroxy group bound to a carbon atom of a ring to-carbon double bond [3, 2006.01] other than a six-membered aromatic Maleic acid esters; Fumaric acid 69/60 ring [3, 2006.01] esters [1, 3, 2006.01] 69/035 esterified with a hydroxy compound having the 69/602 Dicarboxylic acid esters having at least two esterified hydroxy group bound to a carbon atom carbon-to-carbon double bonds [3, 2006.01] of a six-membered aromatic ring [3, 2006.01] 69/604 Polycarboxylic acid esters, the acid moiety 69/04 Formic acid esters **[1, 2006.01]** containing more than two carboxyl 69/06 of monohydroxylic compounds [1, 2006.01] groups [3, 2006.01] 69/07 of unsaturated alcohols [2, 2006.01] 69/606 having only carbon-to-carbon triple bonds as 69/08 • of dihydroxylic compounds [1, 2006.01] unsaturation in the carboxylic acid 69/10 • • of trihydroxylic compounds [1, 2006.01] moiety [3, 2006.01] • • Acetic acid esters [1, 2006.01] 69/12 69/608 • Esters of carboxylic acids having a carboxyl group 69/14 • • of monohydroxylic compounds [1, 2006.01] bound to an acyclic carbon atom and having a ring 69/145 • • • • of unsaturated alcohols [2, 2006.01] other than a six-membered aromatic ring in the acid moiety [3, 2006.01] 69/15 • • • • Vinyl acetate [2, 2006.01] 69/612 Esters of carboxylic acids having a carboxyl group 69/155 Allyl acetate [2, 2006.01] bound to an acyclic carbon atom and having a six-69/157 containing six-membered aromatic membered aromatic ring in the acid rings [3, 2006.01] moiety [3, 2006.01] • • of dihydroxylic compounds [1, 2006.01] 69/16 69/614 • • of phenylacetic acid [3, 2006.01] 69/18 of trihydroxylic compounds [1, 2006.01] 69/616 • • polycyclic [3, 2006.01] 69/21 of hydroxy compounds with more than three 69/618 having unsaturation outside the six-membered hydroxy groups [2, 2006.01] aromatic ring [3, 2006.01] having three or more carbon atoms in the acid 69/22 69/62 • Halogen-containing esters [1, 2, 2006.01] moiety [1, 2006.01] 69/63 of saturated acids [2, 2006.01] 69/24 esterified with monohydroxylic

IPC (2025.01), Section C 23

compounds [1, 2006.01]

compounds [1, 2006.01]

esterified with dihydroxylic

Synthetic waxes [1, 2006.01]

69/26

69/28

69/635

69/65

69/653

• containing rings in the acid moiety [3, 2006.01]

Acrylic acid esters; Methacrylic acid esters;

Haloacrylic acid esters; Halomethacrylic acid

• • of unsaturated acids [2, 2006.01]

esters [3, 2006.01]

69/657	Maleic acid esters; Fumaric acid esters; Halamania acid esters; Halamania acid esters;	69/84	of monocyclic hydroxy carboxylic acids, the
	Halomaleic acid esters; Halofumaric acid		hydroxy groups and the carboxyl groups of which
60.466	esters [3, 2006.01]		are bound to carbon atoms of a six-membered
69/66	Esters of carboxylic acids having esterified carboxyl	CO /OC	aromatic ring [1, 2006.01]
	groups bound to acyclic carbon atoms and having any	69/86	• • with esterified hydroxyl groups [1, 2006.01]
	of the groups OH, O-metal, —CHO, keto, ether,	69/88	• • • with esterified carboxyl groups [1, 2006.01]
	,c,0C , 0-C	69/90	 • with esterified hydroxyl and carboxyl
	/L\\		groups [1, 2006.01]
	acyloxy, Tu-C groups, U-C groups, or	69/92	• • with etherified hydroxyl groups [1, 2, 2006.01]
	0- c/0-c c/0-c	69/94	 of polycyclic hydroxy carboxylic acids, the
	C) 0 - C		hydroxy groups and the carboxyl groups of which
			are bound to carbon atoms of six-membered
	'O-C in the acid moiety [1, 2006.01]		aromatic rings [1, 2, 2006.01]
	• of saturated acids [2, 2006.01]	69/95	• Esters of quinone carboxylic acids [2, 2006.01]
69/675 •	of saturated hydroxy-carboxylic	69/96	• Esters of carbonic or haloformic acids [2, 2006.01]
	acids [3, 2006.01]	71 /00	Estavo ef accessida ef balanco [1, 2000 01]
69/68	• • • Lactic acid esters [1, 3, 2006.01]	71/00	Esters of oxyacids of halogens [1, 2006.01]
69/70	• • • Tartaric acid esters [1, 3, 2006.01]		
69/704 •	• • • Citric acid esters [3, 2006.01]	Compou	nds containing carbon and nitrogen with or without
69/708 •	• • Ethers [3, 2006.01]		nds containing carbon and mitrogen with or without n, halogens or oxygen [5]
69/712 •	• • • the hydroxy group of the ester being	<u>ny ur og cr</u>	n management on oxygen 101
	etherified with a hydroxy compound having	201/00	Preparation of esters of nitric or nitrous acid or of
	the hydroxy group bound to a carbon atom		compounds containing nitro or nitroso groups bound
	of a six-membered aromatic		to a carbon skeleton [5, 2006.01]
	ring [3, 2006.01]	201/02	 Preparation of esters of nitric acid [5, 2006.01]
69/716 •	• • Esters of keto-carboxylic acids [3, 2006.01]	201/04	 Preparation of esters of nitrous acid [5, 2006.01]
69/72 •	• • • • Acetoacetic acid esters [1, 3, 2006.01]	201/06	• Preparation of nitro compounds [5, 2006.01]
69/73	• of unsaturated acids [2, 2006.01]	201/08	by substitution of hydrogen atoms by nitro
69/732 •	of unsaturated hydroxy carboxylic		groups [5, 2006.01]
	acids [3, 2006.01]	201/10	 by substitution of functional groups by nitro
69/734 •	• • Ethers [3, 2006.01]		groups [5, 2006.01]
69/736 •	• • • the hydroxy group of the ester being	201/12	 by reactions not involving the formation of nitro
	etherified with a hydroxy compound having		groups [5, 2006.01]
	the hydroxy group bound to a carbon atom	201/14	 by formation of nitro groups together with
	of a six-membered aromatic		reactions not involving the formation of nitro
	ring [3, 2006.01]		groups [5, 2006.01]
	• Esters of keto-carboxylic acids [3, 2006.01]	201/16	 Separation; Purification; Stabilisation; Use of
69/74 •	Esters of carboxylic acids having an esterified		additives [5, 2006.01]
	carboxyl group bound to a carbon atom of a ring	202/00	Estant of mitric and statement of 15, 2000, 041
CO /740 -	other than a six-membered aromatic ring [1, 2006.01]	203/00	Esters of nitric or nitrous acid [5, 2006.01]
69/743	 of acids with a three-membered ring and with unsaturation outside the ring [3, 2006.01] 	203/02	• Esters of nitric acid [5, 2006.01]
69/747 •	Chrysanthemumic acid esters [3, 2006.01]	203/04	 having nitrate groups bound to acyclic carbon atoms [5, 2006.01]
		202/06	
69/75	 of acids with a six-membered ring [3, 2006.01] of polycyclic acids [3, 2006.01] 	203/06	• • • Glycerol trinitrate [5, 2006.01]
		203/08	having nitrate groups bound to carbon atoms of rings other than rive members of aromatics.
69/757 •	• having any of the groups OH, O-metal, —CHO,		rings other than six-membered aromatic rings [5, 2006.01]
	u c\u r	203/10	 having nitrate groups bound to carbon atoms of
)C\0_C	203/10	six-membered aromatic rings [5, 2006.01]
	keto, etner, acyloxy, o o groups, o o		six inclinered dromatic rings [b, 2000.01]
	keto, ether, acyloxy, O-C groups, O-C 0-C C C C-C C-C C-C C-C C-C C-C C-C C	205/00	Compounds containing nitro groups bound to a
	C\U^-C		carbon skeleton [5, 2006.01]
	groups, or O-C in the acid moiety [3, 2006.01]	205/01	 having nitro groups bound to acyclic carbon
CO /7C	groups, or Som the actumorety [3, 2000.01]		atoms [5, 2006.01]
69/76 •	Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a six-	205/02	 of a saturated carbon skeleton [5, 2006.01]
	membered aromatic ring [1, 2006.01]	205/03	 of an unsaturated carbon skeleton [5, 2006.01]
69/767	• esterified with unsaturated alcohols having the	205/04	 containing six-membered aromatic
35//0/	esterified hydroxy group bound to an acyclic		rings [5, 2006.01]
	carbon atom [3, 2006.01]	205/05	 having nitro groups bound to carbon atoms of rings
69/773	esterified with a hydroxy compound having the		other than six-membered aromatic rings [5, 2006.01]
	esterified hydroxy group bound to a carbon atom	205/06	 having nitro groups bound to carbon atoms of six-
	of a six-membered aromatic ring [3, 2006.01]		membered aromatic rings [5, 2006.01]
69/78 •	• Benzoic acid esters [1, 2006.01]	205/07	the carbon skeleton being further substituted by
69/80	• Phthalic acid esters [1, 2, 2006.01]		halogen atoms [5, 2006.01]
69/82	• • Terephthalic acid esters [1, 2006.01]	205/08	having nitro groups bound to acyclic carbon
69/83	• • of unsaturated alcohols [2, 2006.01]		atoms [5, 2006.01]

205/09 • • • of an unsaturated carbon skeleton [5, 2006.01] 205/10 • having nitro groups bound to carbon atoms of	• • having nitro groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic
rings other than six-membered aromatic rings [5, 2006.01]	rings of the carbon skeleton [5, 2006.01] 205/36 • • to carbon atoms of the same non-condensed
• • having nitro groups bound to carbon atoms of sixmembered aromatic rings [5, 2006.01]	six-membered aromatic ring or to carbon atoms of six-membered aromatic rings being part of the same condensed ring system [5, 2006.01]
205/12 • • • the six-membered aromatic ring or a condensed ring system containing that ring being substituted by halogen atoms [5, 2006.01]	205/37 • • • • the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon
• the carbon skeleton being further substituted by hydroxy groups [5, 2006.01]	atom [5, 2006.01]
 having nitro groups and hydroxy groups bound to acyclic carbon atoms [5, 2006.01] of a saturated carbon skeleton [5, 2006.01] 	205/38 • • • • the oxygen atom of at least one of the etherified hydroxy groups being further bound to a carbon atom of a six-membered
205/16 • • • of a carbon skeleton containing six-membered aromatic rings [5, 2006.01]	aromatic ring, e.g. nitrodiphenyl ethers [5, 2006.01]
• • having nitro groups bound to acyclic carbon atoms	• the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01]
and hydroxy groups bound to carbon atoms of six- membered aromatic rings [5, 2006.01] 205/18 • having nitro groups or hydroxy groups bound to	• • having nitro groups and esterified hydroxy groups bound to acyclic carbon atoms of the carbon
carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]	skeleton [5, 2006.01] 205/41 • having nitro groups or esterified hydroxy groups
205/19 • having nitro groups bound to carbon atoms of sixmembered aromatic rings and hydroxy groups	bound to carbon atoms of rings other than six- membered aromatic rings of the carbon skeleton [5, 2006.01]
 bound to acyclic carbon atoms [5, 2006.01] having nitro groups and hydroxy groups bound to carbon atoms of six-membered aromatic 	• • having nitro groups or esterified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01]
rings [5, 2006.01] 205/21 • • having nitro groups and hydroxy groups bound	205/43 • • • to carbon atoms of the same non-condensed
to carbon atoms of the same non-condensed six-membered aromatic ring [5, 2006.01]	six-membered aromatic ring or to carbon atoms of six-membered aromatic rings being part of the same condensed ring system [5, 2006.01]
205/22 • • • • having one nitro group bound to the ring [5, 2006.01]	• the carbon skeleton being further substituted by — CHO groups [5, 2006.01]
205/23 • • • • having two nitro groups bound to the ring [5, 2006.01]	the carbon skeleton being further substituted by at least one doubly-bound oxygen atom, not being part
205/24 • • • • having three, and only three, nitro groups bound to the ring [5, 2006.01]	of a —CHO group [5, 2006.01]
205/25 • • • having nitro groups bound to carbon atoms of six-membered aromatic rings being part of a	205/46 • • the carbon skeleton containing carbon atoms of quinone rings [5, 2006.01]
condensed ring system [5, 2006.01]	205/47 • • • Anthraquinones containing nitro groups [5, 2006.01]
205/26 • • and being further substituted by halogen atoms [5, 2006.01]	205/48 • • • • the carbon skeleton being further substituted by singly-bound oxygen atoms [5, 2006.01]
• the carbon skeleton being further substituted by etherified hydroxy groups [5, 2006.01]	• the carbon skeleton being further substituted by carboxyl groups [5, 2006.01]
 405/28 • having nitro groups and etherified hydroxy groups bound to acyclic carbon atoms of the carbon 	205/50 • • having nitro groups and carboxyl groups bound to
skeleton [5, 2006.01] 205/29 • • • the carbon skeleton being	acyclic carbon atoms of the carbon skeleton [5, 2006.01]
saturated [5, 2006.01]	205/51 • • • the carbon skeleton being saturated [5, 2006.01]
205/30 • • • • the oxygen atom of at least one of the etherified hydroxy groups being further	205/52 • • • Nitro-acetic acids [5, 2006.01] 205/53 • • • the carbon skeleton containing six-membered
bound to a carbon atom of a six-membered aromatic ring [5, 2006.01]	aromatic rings [5, 2006.01]
205/31 • • • the carbon skeleton containing six-membered aromatic rings [5, 2006.01]	• • having nitro groups bound to acyclic carbon atoms and carboxyl groups bound to carbon atoms of six-
205/32 • • having nitro groups bound to acyclic carbon atoms	membered aromatic rings of the carbon skeleton [5, 2006.01]
and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01]	• • having nitro groups or carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings of the carbon skeleton [5, 2006.01]
• • having nitro groups or etherified hydroxy groups bound to carbon atoms of rings other than six-	205/56 • having nitro groups bound to carbon atoms of sixmembered aromatic rings and carboxyl groups
membered aromatic rings of the carbon skeleton [5, 2006.01]	bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01]
 having nitro groups bound to carbon atoms of six- membered aromatic rings and etherified hydroxy groups bound to acyclic carbon atoms of the 	• • having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of
carbon skeleton [5, 2006.01]	the carbon skeleton [5, 2006.01]

205/58	• • • the carbon skeleton being further substituted by halogen atoms [5, 2006.01]	209/42	• • by reduction of nitrogen-to-nitrogen bonds [5, 2006.01]
205/59	• • • the carbon skeleton being further substituted by singly-bound oxygen atoms [5, 2006.01]	209/44	by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of
205/60	• • • in ortho-position to the carboxyl group, e.g. nitro-salicylic acids [5, 2006.01]		nitriles, carboxylic acid amides, imines or imino- ethers [5, 2006.01]
205/61	• • • the carbon skeleton being further substituted by doubly-bound oxygen atoms [5, 2006.01]	209/46	• • by reduction of carboxylic acids or esters thereof in presence of ammonia or amines [5, 2006.01]
		209/48	 by reduction of nitriles [5, 2006.01]
207/00	Compounds containing nitroso groups bound to a carbon skeleton [5, 2006.01]	209/50	• • by reduction of carboxylic acid amides [5, 2006.01]
207/02	 the carbon skeleton not being further substituted [5, 2006.01] 	209/52	• • by reduction of imines or imino-ethers (C07C 209/24 takes precedence) [5, 2006.01]
207/04	• the carbon skeleton being further substituted by	209/54	• by rearrangement reactions [5, 2006.01]
	singly-bound oxygen atoms [5, 2006.01]	209/56	• • from carboxylic acids involving a Hofmann,
209/00	Preparation of compounds containing amino groups bound to a carbon skeleton [5, 2006.01]	200/50	Curtius, Schmidt, or Lossen-type rearrangement [5, 2006.01]
209/02	 by substitution of hydrogen atoms by amino 	209/58	• • from or <u>via</u> amides [5, 2006.01]
	groups [5, 2006.01]	209/60	 by condensation or addition reactions, e.g. Mannich reaction, addition of ammonia or amines to alkenes or
209/04	 by substitution of functional groups by amino groups [5, 2006.01] 		to alkynes or addition of compounds containing an active hydrogen atom to Schiff's bases, quinone
209/06	• • by substitution of halogen atoms [5, 2006.01]		imines, or aziranes [5, 2006.01]
209/08	 • with formation of amino groups bound to 	209/62	by cleaving carbon-to-nitrogen, sulfur-to-nitrogen, or
	acyclic carbon atoms or to carbon atoms of		phosphorus-to-nitrogen bonds, e.g. hydrolysis of
	rings other than six-membered aromatic		amides, N-dealkylation of amines or quaternary
200/40	rings [5, 2006.01]		ammonium compounds (C07C 209/24 takes
209/10	• • • with formation of amino groups bound to		precedence) [5, 2006.01]
	carbon atoms of six-membered aromatic rings or from amines having nitrogen atoms bound to	209/64	• by disproportionation [5, 2006.01]
	carbon atoms of six-membered aromatic	209/66	 from or <u>via</u> metallo-organic compounds [5, 2006.01]
	rings [5, 2006.01]	209/68	 from amines, by reactions not involving amino
209/12	• • with formation of quaternary ammonium		groups, e.g. reduction of unsaturated amines,
	compounds [5, 2006.01]		aromatisation, or substitution of the carbon
209/14	 by substitution of hydroxy groups or of etherified 	200 /70	skeleton [5, 2006.01]
	or esterified hydroxy groups [5, 2006.01]	209/70	• • by reduction of unsaturated amines [5, 2006.01]
209/16	• • • with formation of amino groups bound to	209/72	• • • by reduction of six-membered aromatic
	acyclic carbon atoms or to carbon atoms of	209/74	rings [5, 2006.01] • by halogenation, hydrohalogenation,
	rings other than six-membered aromatic	209774	dehalogenation, or
	rings [5, 2006.01]		dehydrohalogenation [5, 2006.01]
209/18	• • • with formation of amino groups bound to	209/76	• • by nitration [5, 2006.01]
	carbon atoms of six-membered aromatic rings	209/78	from carbonyl compounds, e.g. from
	or from amines having nitrogen atoms bound to carbon atoms of six-membered aromatic		formaldehyde, and amines having amino groups
	rings [5, 2006.01]		bound to carbon atoms of six-membered aromatic
209/20	• • with formation of quaternary ammonium		rings, with formation of methylene-
200720	compounds [5, 2006.01]		diarylamines [5, 2006.01]
209/22	 by substitution of other functional 	209/80	• by photochemical reactions; by using free
	groups [5, 2006.01]	200/02	radicals [5, 2006.01]
209/24	 by reductive alkylation of ammonia, amines or 	209/82	Purification; Separation; Stabilisation; Use of additions IF 2006 011.
	compounds having groups reducible to amino groups,	200/04	additives [5, 2006.01]
	with carbonyl compounds [5, 2006.01]	209/84	• • Purification [5, 2006.01]
209/26	• • by reduction with hydrogen [5, 2006.01]	209/86	• • Separation [5, 2006.01]
209/28	by reduction with other reducing	209/88	• • • Separation of optical isomers [5, 2006.01]
	agents [5, 2006.01]	209/90	• • Stabilisation; Use of additives [5, 2006.01]
209/30	• by reduction of nitrogen-to-oxygen or nitrogen-to-	211/00	Compounds containing amino groups bound to a
200/22	nitrogen bonds [5, 2006.01]	/ **	carbon skeleton [5, 2006.01]
209/32	• by reduction of nitro groups [5, 2006.01]	211/01	 having amino groups bound to acyclic carbon
209/34	 • by reduction of nitro groups bound to acyclic carbon atoms or to carbon atoms of rings other 		atoms [5, 2006.01]
	than six-membered aromatic rings [5, 2006.01]	211/02	of an acyclic saturated carbon
209/36	by reduction of nitro groups bound to carbon		skeleton [5, 2006.01]
200100	atoms of six-membered aromatic	211/03	• • • Monoamines [5, 2006.01]
	rings [5, 2006.01]	211/04	• • • • Mono-, di- or tri-methylamine [5, 2006.01]
209/38	 by reduction of nitroso groups [5, 2006.01] 	211/05	• • • • Mono-, di- or tri-ethylamine [5, 2006.01]
209/40	by reduction of hydroxylamino or oxyimino	211/06	• • • containing only n- or iso-propyl
	groups [5, 2006.01]		groups [5, 2006.01]

211/07	• • • containing one, two or three alkyl groups,	211/38 • • • containing condensed ring systems [5, 2006.01]
	each having the same number of carbon atoms in excess of three [5, 2006.01]	211/39 • of an unsaturated carbon skeleton [5, 2006.01] 211/40 • ocontaining only non-condensed
211/08	• • • containing alkyl groups having a different	211/40 • • • containing only non-condensed rings [5, 2006.01]
	number of carbon atoms [5, 2006.01]	211/41 • • • containing condensed ring systems [5, 2006.01]
211/09	• • • Diamines [5, 2006.01]	211/42 • • • with six-membered aromatic rings being part
211/10 211/11	Diaminoethanes [5, 2006.01]Diaminopropanes [5, 2006.01]	of the condensed ring systems [5, 2006.01]
211/11 211/12	• • • • 1,6-Diaminohexanes [5, 2006.01]	• having amino groups bound to carbon atoms of six- membered aromatic rings of the carbon
211/13	• • • Amines containing three or more amino groups	skeleton [5, 2006.01]
	bound to the carbon skeleton [5, 2006.01]	211/44 • • having amino groups bound to only one six-
211/14	Amines containing amino groups bound to at	membered aromatic ring [5, 2006.01]
	least two aminoalkyl groups, e.g. diethylenetriamines [5, 2006.01]	211/45 • • • Monoamines [5, 2006.01] 211/46 • • • • Aniline [5, 2006.01]
211/15	• • • the carbon skeleton being further substituted by	211/47 • • • • Toluidines; Homologues
	halogen atoms or by nitro or nitroso	thereof [5, 2006.01]
211/16	groups [5, 2006.01] • • of a saturated carbon skeleton containing rings	211/48 • • • N-alkylated amines [5, 2006.01]
211/10	of a saturated carbon skeleton containing rings other than six-membered aromatic	211/49 • • having at least two amino groups bound to the carbon skeleton [5, 2006.01]
	rings [5, 2006.01]	211/50 • • • with at least two amino groups bound to
211/17	• • • containing only non-condensed	carbon atoms of six-membered aromatic
211/18	rings [5, 2006.01] • • • containing at least two amino groups bound to	rings of the carbon skeleton [5, 2006.01]
211/10	the carbon skeleton [5, 2006.01]	211/51 • • • • Phenylenediamines [5, 2006.01] 211/52 • • • the carbon skeleton being further substituted by
211/19	• • containing condensed ring systems [5, 2006.01]	halogen atoms or by nitro or nitroso
211/20	• • of an acyclic unsaturated carbon	groups [5, 2006.01]
211/21	skeleton [5, 2006.01] • • • Monoamines [5, 2006.01]	211/53 • • • having the nitrogen atom of at least one of the amino groups further bound to a hydrocarbon
211/21	containing at least two amino groups bound to	radical substituted by amino
	the carbon skeleton [5, 2006.01]	groups [5, 2006.01]
211/23	 the carbon skeleton containing carbon-to- carbon triple bonds [5, 2006.01] 	• • having amino groups bound to two or three six-membered aromatic rings [5, 2006.01]
211/24	• • the carbon skeleton being further substituted by	211/55 • • • Diphenylamines [5, 2006.01]
	halogen atoms or by nitro or nitroso groups [5, 2006.01]	211/56 • • • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso
211/25	of an unsaturated carbon skeleton containing rings	groups [5, 2006.01]
	other than six-membered aromatic	211/57 • having amino groups bound to carbon atoms of
211/26	rings [5, 2006.01] • of an unsaturated carbon skeleton containing at	six-membered aromatic rings being part of condensed ring systems of the carbon
211/20	least one six-membered aromatic ring [5, 2006.01]	skeleton [5, 2006.01]
211/27	• • having amino groups linked to the six-	211/58 • • Naphthylamines; N-substituted derivatives
	membered aromatic ring by saturated carbon chains [5, 2006.01]	thereof [5, 2006.01] 211/59 • • • the carbon skeleton being further substituted by
211/28	• • having amino groups linked to the six-	halogen atoms or by nitro or nitroso
	membered aromatic ring by unsaturated carbon	groups [5, 2006.01]
211/29	chains [5, 2006.01]	211/60 • • • containing a ring other than a six-membered
211/29	 • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso 	aromatic ring forming part of at least one of the condensed ring systems [5, 2006.01]
	groups [5, 2006.01]	211/61 • • • with at least one of the condensed ring systems
211/30	 the six-membered aromatic ring being part of a condensed ring system formed by two 	formed by three or more rings [5, 2006.01]
	rings [5, 2006.01]	 211/62 • Quaternary ammonium compounds [5, 2006.01] 211/63 • having quaternised nitrogen atoms bound to
211/31	 the six-membered aromatic ring being part of a 	acyclic carbon atoms [5, 2006.01]
	condensed ring system formed by at least three rings [5, 2006.01]	211/64 • having quaternised nitrogen atoms bound to
211/32	• • • containing dibenzocycloheptane or	carbon atoms of six-membered aromatic rings [5, 2006.01]
	dibenzocycloheptene ring systems or condensed derivatives thereof [5, 2006.01]	211/65 • Metal complexes of amines [5, 2006.01]
211/33	 having amino groups bound to carbon atoms of rings 	213/00 Preparation of compounds containing amino and
	other than six-membered aromatic rings [5, 2006.01]	hydroxy, amino and etherified hydroxy or amino and
211/34	• • of a saturated carbon skeleton [5, 2006.01]	esterified hydroxy groups bound to the same carbon skeleton [5, 2006.01]
211/35	 containing only non-condensed rings [5, 2006.01] 	• by reactions involving the formation of amino groups
211/36	 containing at least two amino groups bound to 	from compounds containing hydroxy groups or
211/27	the carbon skeleton [5, 2006.01] • • • being further substituted by halogen atoms or	etherified or esterified hydroxy groups [5, 2006.01] 213/04 • by reaction of ammonia or amines with olefin oxides
211/37	by nitro or nitroso groups [5, 2006.01]	or halohydrins [5, 2006.01]

213/06	• from hydroxy amines by reactions involving the	215/44	• • bound to carbon atoms of the same ring or
	etherification or esterification of hydroxy groups [5, 2006.01]	215 / 46	condensed ring system [5, 2006.01]
213/08	 by reactions not involving the formation of amino 	215/46	 having hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino
213/00	groups, hydroxy groups or etherified or esterified		groups bound to acyclic carbon atoms or to carbon
	hydroxy groups [5, 2006.01]		atoms of rings other than six-membered aromatic
213/10	Separation; Purification; Stabilisation; Use of		rings of the same carbon skeleton [5, 2006.01]
	additives [5, 2006.01]	215/48	 with amino groups linked to the six-membered
			aromatic ring, or to the condensed ring system
215/00	Compounds containing amino and hydroxy groups		containing that ring, by carbon chains not further
045 (00	bound to the same carbon skeleton [5, 2006.01]		substituted by hydroxy groups [5, 2006.01]
215/02	having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon.	215/50	• • with amino groups and the six-membered
	acyclic carbon atoms of the same carbon skeleton [5, 2006.01]		aromatic ring, or the condensed ring system containing that ring, bound to the same carbon
215/04	 the carbon skeleton being saturated [5, 2006.01] 		atom of the carbon chain [5, 2006.01]
215/06	• • • and acyclic [5, 2006.01]	215/52	• • linked by carbon chains having two carbon
215/08	• • • with only one hydroxy group and one amino		atoms between the amino groups and the six-
	group bound to the carbon		membered aromatic ring or the condensed ring
	skeleton [5, 2006.01]		system containing that ring [5, 2006.01]
215/10	 • • with one amino group and at least two 	215/54	• • • linked by carbon chains having at least three
	hydroxy groups bound to the carbon		carbon atoms between the amino groups and the six-membered aromatic ring or the
045/40	skeleton [5, 2006.01]		condensed ring system containing that
215/12	• • • • the nitrogen atom of the amino group being		ring [5, 2006.01]
	further bound to hydrocarbon groups substituted by hydroxy groups [5, 2006.01]	215/56	with amino groups linked to the six-membered
215/14	• • • the nitrogen atom of the amino group being		aromatic ring, or to the condensed ring system
215/11	further bound to hydrocarbon groups		containing that ring, by carbon chains further
	substituted by amino groups [5, 2006.01]		substituted by hydroxy groups [5, 2006.01]
215/16	• • • the nitrogen atom of the amino group being	215/58	• • • with hydroxy groups and the six-membered
	further bound to carbon atoms of six-		aromatic ring, or the condensed ring system
	membered aromatic rings [5, 2006.01]		containing that ring, bound to the same carbon atom of the carbon chain [5, 2006.01]
215/18	• • • with hydroxy groups and at least two amino	215/60	• • • • the chain having two carbon atoms between
	groups bound to the carbon skeleton [5, 2006.01]	215, 00	the amino groups and the six-membered
215/20	the carbon skeleton being saturated and		aromatic ring or the condensed ring system
213/20	containing rings [5, 2006.01]		containing that ring [5, 2006.01]
215/22	• • the carbon skeleton being unsaturated [5, 2006.01]	215/62	• • • the chain having at least three carbon atoms
215/24	• • • and acyclic [5, 2006.01]		between the amino groups and the six-
215/26	• • and containing rings other than six-membered		membered aromatic ring or the condensed ring system containing that ring [5, 2006.01]
	aromatic rings [5, 2006.01]	215/64	with rings other than six-membered aromatic rings
215/28	 • and containing six-membered aromatic 	215/ 5 .	being part of the carbon skeleton [5, 2006.01]
0.4 = 40.0	rings [5, 2006.01]	215/66	 with quaternised amino groups bound to the
215/30	• • • containing hydroxy groups and carbon atoms of six-membered aromatic rings bound to the		carbon skeleton [5, 2006.01]
	same carbon atom of the carbon	215/68	having amino groups bound to carbon atoms of six-
	skeleton [5, 2006.01]		membered aromatic rings and hydroxy groups bound
215/32	· · · · containing hydroxy groups and carbon		to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same
	atoms of two six-membered aromatic		carbon skeleton [5, 2006.01]
	rings bound to the same carbon atom of	215/70	with rings other than six-membered aromatic rings
045/04	the carbon skeleton [5, 2006.01]		being part of the carbon skeleton [5, 2006.01]
215/34	• • • containing hydroxy groups and carbon atoms of six-membered aromatic rings bound to the	215/72	 with quaternised amino groups bound to the
	same carbon atom of the carbon skeleton and		carbon skeleton [5, 2006.01]
	at least one hydroxy group bound to another	215/74	 having hydroxy groups and amino groups bound to
	carbon atom of the carbon		carbon atoms of six-membered aromatic rings of the same carbon skeleton [5, 2006.01]
	skeleton [5, 2006.01]	215/76	of the same non-condensed six-membered
215/36	• • • • 1-Aryl-2-amino-1,3-propane	213/70	aromatic ring [5, 2006.01]
215/20	diols [5, 2006.01]	215/78	containing at least two hydroxy groups bound
215/38	• • • with rings other than six-membered aromatic rings being part of the carbon		to the carbon skeleton [5, 2006.01]
	skeleton [5, 2006.01]	215/80	• • containing at least two amino groups bound to
215/40	with quaternised nitrogen atoms bound to carbon	D4 = 100	the carbon skeleton [5, 2006.01]
	atoms of the carbon skeleton [5, 2006.01]	215/82	• • having the nitrogen atom of at least one of the
215/42	 having amino groups or hydroxy groups bound to 		amino groups further bound to a carbon atom of another six-membered aromatic
	carbon atoms of rings other than six-membered		ring [5, 2006.01]
	aromatic rings of the same carbon skeleton [5, 2006.01]		•
	3NCICIUII [J, 4000.01]		

215/84	 having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems [5, 2006.01] 	217/34 • • • • • by halogen atoms, by trihalomethyl, nitro or nitroso groups, or by singly-bound oxygen atoms [5, 2006.01]
215/86	• • • being formed by two rings [5, 2006.01]	217/36 • • • • by carbon atoms having at least two
215/88	 • being formed by at least three 	bonds to oxygen atoms [5, 2006.01]
213/00		
215/90	rings [5, 2006.01] • • with quaternised amino groups bound to the carbon skeleton [5, 2006.01]	217/38 • • • • the six-membered aromatic ring being part of a condensed ring system containing rings other than six-membered aromatic rings [5, 2006.01]
217/00	Compounds containing amino and etherified	217/40 • • • having at least two singly-bound oxygen
	hydroxy groups bound to the same carbon	atoms, with at least one being part of an
	skeleton [5, 2006.01]	etherified hydroxy group, bound to the same
217/02	 having etherified hydroxy groups and amino groups 	carbon atom of the carbon skeleton, e.g.
21//02		
	bound to acyclic carbon atoms of the same carbon	amino-ketals, ortho esters [5, 2006.01]
	skeleton [5, 2006.01]	217/42 • • • having etherified hydroxy groups and at least
217/04	 the carbon skeleton being acyclic and 	two amino groups bound to the carbon
	saturated [5, 2006.01]	skeleton [5, 2006.01]
217/06	 having only one etherified hydroxy group and 	• • the carbon skeleton being saturated and containing
	one amino group bound to the carbon skeleton,	rings [5, 2006.01]
	which is not further substituted [5, 2006.01]	217/46 • • the carbon skeleton being acyclic and
217/08	• • • the oxygen atom of the etherified hydroxy	unsaturated [5, 2006.01]
21//00	group being further bound to an acyclic	
	carbon atom [5, 2006.01]	• • the carbon skeleton being unsaturated and
- · - · · ·		containing rings [5, 2006.01]
217/10	• • • • to an acyclic carbon atom of a	217/50 • • Ethers of hydroxy amines of undetermined
	hydrocarbon radical containing six-	structure, e.g. obtained by reactions of epoxides
	membered aromatic rings [5, 2006.01]	with hydroxy amines [5, 2006.01]
217/12	 • • • the oxygen atom of the etherified hydroxy 	• having etherified hydroxy groups or amino groups
	group being further bound to a carbon atom	bound to carbon atoms of rings other than six-
	of a ring other than a six-membered aromatic	membered aromatic rings of the same carbon
	ring [5, 2006.01]	skeleton [5, 2006.01]
217/14	 • • • the oxygen atom of the etherified hydroxy 	• having etherified hydroxy groups bound to carbon
	group being further bound to a carbon atom	atoms of at least one six-membered aromatic ring and
	of a six-membered aromatic	amino groups bound to acyclic carbon atoms or to
	ring [5, 2006.01]	carbon atoms of rings other than six-membered
217/16	• • • • the six-membered aromatic ring or	aromatic rings of the same carbon
21//10	condensed ring system containing that	skeleton [5, 2006.01]
	ring not being further	217/56 • with amino groups linked to the six-membered
	substituted [5, 2006.01]	aromatic ring, or to the condensed ring system
217/18	• • • • the six-membered aromatic ring or	containing that ring, by carbon chains not further
21//10	condensed ring system containing that	substituted by singly-bound oxygen
		atoms [5, 2006.01]
045/00	ring being further substituted [5, 2006.01]	
217/20	• • • • by halogen atoms, by trihalomethyl,	217/58 • • • with amino groups and the six-membered
	nitro or nitroso groups, or by singly-	aromatic ring, or the condensed ring system
	bound oxygen atoms [5, 2006.01]	containing that ring, bound to the same carbon
217/22	 • • • • by carbon atoms having at least two 	atom of the carbon chain [5, 2006.01]
	bonds to oxygen atoms [5, 2006.01]	217/60 • • • linked by carbon chains having two carbon
217/24	 • • • • the six-membered aromatic ring being 	atoms between the amino groups and the six-
	part of a condensed ring system	membered aromatic ring or the condensed ring
	containing rings other than six-membered	system containing that ring [5, 2006.01]
	aromatic rings [5, 2006.01]	217/62 • • • linked by carbon chains having at least three
217/26	 having only one etherified hydroxy group and 	carbon atoms between the amino groups and
217720	one amino group bound to the carbon skeleton,	the six-membered aromatic ring or the
	which is further substituted by halogen atoms	condensed ring system containing that
	or by nitro or nitroso groups [5, 2006.01]	ring [5, 2006.01]
217/28		217/64 • • with amino groups linked to the six-membered
21//20	having one amino group and at least two singly bound avugan atoms, with at least one	aromatic ring, or to the condensed ring system
	singly-bound oxygen atoms, with at least one	containing that ring, by carbon chains further
	being part of an etherified hydroxy group,	substituted by singly-bound oxygen
	bound to the carbon skeleton, e.g. ethers of	atoms [5, 2006.01]
045/22	polyhydroxy amines [5, 2006.01]	
217/30	• • • having the oxygen atom of at least one of the	8,7 ,78
	etherified hydroxy groups further bound to a	membered aromatic rings bound to the same
	carbon atom of a six-membered aromatic	carbon atom of the carbon chain [5, 2006.01]
	ring [5, 2006.01]	217/68 • • • with singly-bound oxygen atoms, six-
217/32	 • • • the six-membered aromatic ring or 	membered aromatic rings and amino groups
	condensed ring system containing that	bound to the same carbon atom of the carbon
	ring being further substituted [5, 2006.01]	chain [5, 2006.01]

217/70	• • • • linked by carbon chains having two carbon atoms between the amino groups and the sixmembered aromatic ring or the condensed ring system containing that ring [5, 2006.01]	219/10	 having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of a carbon skeleton containing
217/72	• • • linked by carbon chains having at least three		rings [5, 2006.01]
	carbon atoms between the amino groups and the six-membered aromatic ring or the	219/12	 having at least one of the hydroxy groups esterified by a carboxylic acid having the
	condensed ring system containing that		esterifying carboxyl group bound to a carbon
	ring [5, 2006.01]		atom of a ring other than a six-membered
217/74	 with rings other than six-membered aromatic rings 		aromatic ring [5, 2006.01]
	being part of the carbon skeleton [5, 2006.01]	219/14	• • having at least one of the hydroxy groups
217/76	 having amino groups bound to carbon atoms of six- membered aromatic rings and etherified hydroxy 		esterified by a carboxylic acid having the esterifying carboxyl group bound to a carbon
	groups bound to acyclic carbon atoms or to carbon		atom of a six-membered aromatic
	atoms of rings other than six-membered aromatic		ring [5, 2006.01]
	rings of the same carbon skeleton [5, 2006.01]	219/16	• • having at least one of the hydroxy groups
217/78	 having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic 		esterified by an inorganic acid or a derivative thereof [5, 2006.01]
	rings of the same carbon skeleton [5, 2006.01]	219/18	 the carbon skeleton being saturated and containing
217/80	 having amino groups and etherified hydroxy 		rings [5, 2006.01]
	groups bound to carbon atoms of non-condensed	219/20	• the carbon skeleton being unsaturated [5, 2006.01]
247/02	six-membered aromatic rings [5, 2006.01]	219/22	• • • and containing six-membered aromatic
217/82	• • • of the same non-condensed six-membered aromatic ring [5, 2006.01]	219/24	rings [5, 2006.01] • having esterified hydroxy groups or amino groups
217/84	• • • • the oxygen atom of at least one of the	213/24	bound to carbon atoms of rings other than six-
	etherified hydroxy groups being further		membered aromatic rings of the same carbon
	bound to an acyclic carbon	240/26	skeleton [5, 2006.01]
217/86	atom [5, 2006.01] • • • • to an acyclic carbon atom of a	219/26	 having esterified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and
217700	hydrocarbon radical containing six-		amino groups bound to acyclic carbon atoms or to
	membered aromatic rings [5, 2006.01]		carbon atoms of rings other than six-membered
217/88	• • • the oxygen atom of at least one of the		aromatic rings of the same carbon skeleton [5, 2006.01]
	etherified hydroxy groups being further bound to a carbon atom of a ring other than a	219/28	 having amino groups bound to acyclic carbon
	six-membered aromatic ring [5, 2006.01]		atoms of the carbon skeleton [5, 2006.01]
217/90	• • • the oxygen atom of at least one of the	219/30	• • with amino groups linked to the six-membered
	etherified hydroxy groups being further bound to a carbon atom of a six-membered		aromatic ring, or to the condensed ring system containing that ring, by carbon chains further
	aromatic ring, e.g. amino-		substituted by singly-bound oxygen
	diphenylethers [5, 2006.01]		atoms [5, 2006.01]
217/92	• • • • the nitrogen atom of at least one of the	219/32	having amino groups bound to carbon atoms of six- morphored groups tip group and actorified by drown
	amino groups being further bound to a carbon atom of a six-membered aromatic		membered aromatic rings and esterified hydroxy groups bound to acyclic carbon atoms or to carbon
	ring [5, 2006.01]		atoms of rings other than six-membered aromatic
217/94	 having amino groups bound to carbon atoms of 		rings of the same carbon skeleton [5, 2006.01]
	six-membered aromatic rings being part of condensed ring systems and etherified hydroxy	219/34	 having amino groups and esterified hydroxy groups bound to carbon atoms of six-membered aromatic
	groups bound to carbon atoms of six-membered		rings of the same carbon skeleton [5, 2006.01]
	aromatic rings of the same carbon	224422	
	skeleton [5, 2006.01]	221/00	Preparation of compounds containing amino groups and doubly-bound oxygen atoms bound to the same
219/00	Compounds containing amino and esterified hydroxy		carbon skeleton [5, 2006.01]
	groups bound to the same carbon	222/00	Common de contribio a contra con de CHO accommo
219/02	skeleton [5, 2006.01]having esterified hydroxy groups and amino groups	223/00	Compounds containing amino and —CHO groups bound to the same carbon skeleton [5, 2006.01]
213/02	bound to acyclic carbon atoms of the same carbon	223/02	having amino groups bound to acyclic carbon atoms
	skeleton [5, 2006.01]		of the carbon skeleton [5, 2006.01]
219/04	the carbon skeleton being acyclic and	223/04	having amino groups bound to carbon atoms of rings ather than six membered assembles of the carbon.
219/06	saturated [5, 2006.01]having the hydroxy groups esterified by		other than six-membered aromatic rings of the carbon skeleton [5, 2006.01]
213/00	carboxylic acids having the esterifying carboxyl	223/06	 having amino groups bound to carbon atoms of six-
	groups bound to hydrogen atoms or to acyclic		membered aromatic rings of the carbon
	carbon atoms of an acyclic saturated carbon skeleton [5, 2006.01]		skeleton [5, 2006.01]
219/08	• • having at least one of the hydroxy groups	225/00	Compounds containing amino groups and doubly-
_10,00	esterified by a carboxylic acid having the		bound oxygen atoms bound to the same carbon
	esterifying carboxyl group bound to an acyclic		skeleton, at least one of the doubly-bound oxygen atoms not being part of a —CHO group, e.g. amino
	carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01]		ketones [5, 2006.01]

225/02	having amino groups bound to acyclic carbon atoms	227/24	• from hydantoins [5, 2006.01]
	of the carbon skeleton [5, 2006.01]	227/26	 from compounds containing carboxyl groups by
225/04	• • the carbon skeleton being saturated [5, 2006.01]		reaction with HCN, or a salt thereof, and amines, or
225/06	• • • and acyclic [5, 2006.01]		from aminonitriles [5, 2006.01]
225/08	• • • and containing rings [5, 2006.01]	227/28	 from natural products [5, 2006.01]
225/10	 • • • with doubly-bound oxygen atoms bound to 	227/30	 Preparation of optical isomers [5, 2006.01]
	carbon atoms not being part of	227/32	 by stereospecific synthesis [5, 2006.01]
	rings [5, 2006.01]	227/34	• • by separation of optical isomers [5, 2006.01]
225/12	 • • with doubly-bound oxygen atoms bound to 	227/36	 Racemisation of optical isomers [5, 2006.01]
	carbon atoms being part of	227/38	 Separation; Purification; Stabilisation; Use of
	rings [5, 2006.01]		additives (separation of optical isomers
225/14	• the carbon skeleton being unsaturated [5, 2006.01]		C07C 227/34) [5, 2006.01]
225/16	 and containing six-membered aromatic 	227/40	 Separation; Purification [5, 2006.01]
	rings [5, 2006.01]	227/42	• • • Crystallisation [5, 2006.01]
225/18	 • • • the carbon skeleton containing also rings 	227/44	• • Stabilisation; Use of additives [5, 2006.01]
	other than six-membered aromatic		
	rings [5, 2006.01]	229/00	Compounds containing amino and carboxyl groups
225/20	 having amino groups bound to carbon atoms of rings 		bound to the same carbon skeleton [5, 2006.01]
	other than six-membered aromatic rings of the carbon	229/02	 having amino and carboxyl groups bound to acyclic
	skeleton [5, 2006.01]		carbon atoms of the same carbon
225/22	 having amino groups bound to carbon atoms of six- 		skeleton [5, 2006.01]
	membered aromatic rings of the carbon	229/04	 the carbon skeleton being acyclic and
	skeleton [5, 2006.01]		saturated [5, 2006.01]
225/24	• the carbon skeleton containing carbon atoms of	229/06	 having only one amino and one carboxyl group
00 = /00	quinone rings [5, 2006.01]		bound to the carbon skeleton [5, 2006.01]
225/26	having amino groups bound to carbon atoms of	229/08	 • • • the nitrogen atom of the amino group being
	quinone rings or of condensed ring systems		further bound to hydrogen
225/20	containing quinone rings [5, 2006.01]		atoms [5, 2006.01]
225/28	• • • of non-condensed quinone rings [5, 2006.01]	229/10	• • • the nitrogen atom of the amino group being
225/30	• • • of condensed quinone ring systems formed by		further bound to acyclic carbon atoms or to
225 /22	two rings [5, 2006.01]		carbon atoms of rings other than six- membered aromatic rings [5, 2006.01]
225/32	• • • of condensed quinone ring systems formed by at least three rings [5, 2006.01]	229/12	
225/24		229/12	• • • • • to carbon atoms of acyclic carbon skeletons [5, 2006.01]
225/34	• • • • Amino anthraquinones [5, 2006.01]	229/14	• • • • to carbon atoms of carbon skeletons
225/36	• • • • the carbon skeleton being further	229/14	containing rings [5, 2006.01]
	substituted by singly-bound oxygen atoms [5, 2006.01]	229/16	• • • • to carbon atoms of hydrocarbon radicals
	utoms [b, 2000.01]	223/10	substituted by amino or carboxyl groups,
227/00	Preparation of compounds containing amino and		e.g. ethylenediamine-tetra-acetic acid,
	carboxyl groups bound to the same carbon		iminodiacetic acids [5, 2006.01]
	skeleton [5, 2006.01]	229/18	 • • the nitrogen atom of the amino group being
227/02	 Formation of carboxyl groups in compounds 		further bound to carbon atoms of six-
	containing amino groups, e.g. by oxidation of amino		membered aromatic rings [5, 2006.01]
	alcohols [5, 2006.01]	229/20	 the carbon skeleton being further substituted by
227/04	Formation of amino groups in compounds containing Formation of amino groups in compounds containing		halogen atoms or by nitro or nitroso
205.406	carboxyl groups [5, 2006.01]		groups [5, 2006.01]
227/06	• • by addition or substitution reactions, without	229/22	• • • the carbon skeleton being further substituted by
	increasing the number of carbon atoms in the carbon skeleton of the acid [5, 2006.01]	555/5/	oxygen atoms [5, 2006.01]
227/08	• • by reaction of ammonia or amines with acids	229/24	• • having more than one carboxyl group bound to
22//00	containing functional groups [5, 2006.01]		the carbon skeleton, e.g. aspartic
227/10	with simultaneously increasing the number of	229/26	acid [5, 2006.01]
22//10	carbon atoms in the carbon skeleton [5, 2006.01]	229/20	 having more than one amino group bound to the carbon skeleton, e.g. lysine [5, 2006.01]
227/12	• Formation of amino and carboxyl groups [5, 2006.01]	229/28	 the carbon skeleton, e.g. lysine [3, 200.01] the carbon skeleton being saturated and containing
227/14	from compounds containing already amino and	223/20	rings [5, 2006.01]
	carboxyl groups or derivatives thereof [5, 2006.01]	229/30	 the carbon skeleton being acyclic and
227/16	 by reactions not involving the amino or carboxyl 		unsaturated [5, 2006.01]
	groups [5, 2006.01]	229/32	the carbon skeleton being unsaturated and
227/18	 by reactions involving amino or carboxyl groups, 		containing rings other than six-membered
-	e.g. hydrolysis of esters or amides, by formation of		aromatic rings [5, 2006.01]
	halides, salts or esters [5, 2006.01]	229/34	the carbon skeleton containing six-membered
227/20	• • • by hydrolysis of N-acylated amino acids or		aromatic rings [5, 2006.01]
	derivatives thereof, e.g. hydrolysis of	229/36	• • • with at least one amino group and one carboxyl
	carbamates [5, 2006.01]		group bound to the same carbon atom of the
227/22	• from lactams, cyclic ketones or cyclic oximes, e.g. by		carbon skeleton [5, 2006.01]
	reaction involving Beckmann		
	rearrangement [5, 2006.01]		

229/38	 having amino groups bound to acyclic carbon atoms and carboxyl groups bound to carbon atoms of six- 	231/08	 from amides by reaction at nitrogen atoms of carboxamide groups [5, 2006.01]
	membered aromatic rings of the same carbon skeleton [5, 2006.01]	231/10	 from compounds not provided for in groups C07C 231/02-C07C 231/08 [5, 2006.01]
229/40	 having amino groups bound to carbon atoms of at least one six-membered aromatic ring and carboxyl 	231/12	 by reactions not involving the formation of carboxamide groups [5, 2006.01]
	groups bound to acyclic carbon atoms of the same carbon skeleton [5, 2006.01]	231/14	 by formation of carboxamide groups together with reactions not involving the carboxamide
229/42	 with carboxyl groups linked to the six-membered aromatic ring, or to the condensed ring system 		groups [5, 2006.01]
	containing that ring, by saturated carbon	231/16 231/18	Preparation of optical isomers [5, 2006.01]by stereospecific synthesis [5, 2006.01]
	chains [5, 2006.01]	231/10	 by secreospecific synthesis [5, 2006.01] by separation of optical isomers [5, 2006.01]
229/44	with carboxyl groups linked to the six-membered wrong or to the condensed ring system.	231/22	Separation; Purification; Stabilisation; Use of
	aromatic ring, or to the condensed ring system containing that ring, by unsaturated carbon		additives (separation of optical isomers
	chains [5, 2006.01]	231/24	C07C 231/20) [5, 2006.01] • • Separation; Purification [5, 2006.01]
229/46	having amino or carboxyl groups bound to carbon	231/24	Separation, Purnication [3, 2000.01]
	atoms of rings other than six-membered aromatic rings of the same carbon skeleton [5, 2006.01]	233/00	Carboxylic acid amides [5, 2006.01]
229/48	with amino groups and carboxyl groups bound to	233/01	 having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon
	carbon atoms of the same non-condensed		atoms [5, 2006.01]
229/50	ring [5, 2006.01]	233/02	 having nitrogen atoms of carboxamide groups
229/50	 with amino groups and carboxyl groups bound to carbon atoms being part of the same condensed ring system [5, 2006.01] 		bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01]
229/52	having amino and carboxyl groups bound to carbon	233/03	• • • with carbon atoms of carboxamide groups
	atoms of six-membered aromatic rings of the same	233/04	bound to hydrogen atoms [5, 2006.01]with carbon atoms of carboxamide groups
229/54	carbon skeleton [5, 2006.01]	2557 04	bound to carbon atoms of an acyclic saturated
229/34	 with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered 		carbon skeleton [5, 2006.01]
	aromatic ring [5, 2006.01]	233/05	• • • • having the nitrogen atoms of the carboxamide groups bound to hydrogen
229/56	• • • with amino and carboxyl groups bound in ortho- position [5, 2006.01]		atoms or to acyclic carbon atoms [5, 2006.01]
229/58	• • • having the nitrogen atom of at least one of	233/06	• • • having the nitrogen atom of at least one of
	the amino groups further bound to a carbon atom of a six-membered aromatic ring, e.g.		the carboxamide groups bound to a carbon
	N-phenyl-anthranilic acids [5, 2006.01]		atom of a ring other than a six-membered aromatic ring [5, 2006.01]
229/60	• • • with amino and carboxyl groups bound in meta-	233/07	• • • having the nitrogen atom of at least one of
229/62	or para- positions [5, 2006.01] • • • with amino groups and at least two carboxyl		the carboxamide groups bound to a carbon
2237 02	groups bound to carbon atoms of the same six-		atom of a six-membered aromatic ring [5, 2006.01]
	membered aromatic ring [5, 2006.01]	233/08	• • • with carbon atoms of carboxamide groups
229/64	• • the carbon skeleton being further substituted by singly-bound oxygen atoms [5, 2006.01]		bound to acyclic carbon atoms of a saturated
229/66	• • • the carbon skeleton being further substituted by	222/00	carbon skeleton containing rings [5, 2006.01]
2237 00	doubly-bound oxygen atoms [5, 2006.01]	233/09	 • with carbon atoms of carboxamide groups bound to carbon atoms of an acyclic
229/68	with amino and carboxyl groups bound to carbon		unsaturated carbon skeleton [5, 2006.01]
	atoms of six-membered aromatic rings being part of the same condensed ring system [5, 2006.01]	233/10	• • with carbon atoms of carboxamide groups
229/70	the carbon skeleton being further substituted by		bound to carbon atoms of an unsaturated carbon skeleton containing rings other than six-
	singly-bound oxygen atoms [5, 2006.01]		membered aromatic rings [5, 2006.01]
229/72	 the carbon skeleton being further substituted by doubly-bound oxygen atoms [5, 2006.01] 	233/11	• • • with carbon atoms of carboxamide groups
229/74	• • • the condensed ring system being formed by		bound to carbon atoms of an unsaturated carbon skeleton containing six-membered aromatic
	at least three rings, e.g. amino anthraquinone		rings [5, 2006.01]
	carboxylic acids [5, 2006.01]	233/12	• • having the nitrogen atom of at least one of the
229/76	 Metal complexes of amino carboxylic acids [5, 2006.01] 		carboxamide groups bound to a carbon atom of a
	ucius [0 , 2000.01]		hydrocarbon radical substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01]
231/00	Preparation of carboxylic acid amides [5, 2006.01]	233/13	 • with the substituted hydrocarbon radical bound
231/02	 from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or 		to the nitrogen atom of the carboxamide group
	amines [5, 2006.01]	233/14	by an acyclic carbon atom [5, 2006.01] • • • with the substituted hydrocarbon radical bound
231/04	• from ketenes by reaction with ammonia or	200/14	to the nitrogen atom of the carboxamide group
221 /00	amines [5, 2006.01]		by a carbon atom of a ring other than a six-
231/06	 from nitriles by transformation of cyano groups into carboxamide groups [5, 2006.01] 		membered aromatic ring [5, 2006.01]

233/15	• • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring [5, 2006.01]	• • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a ring other than a sixmembered aromatic ring [5, 2006.01]
233/16	 having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms [5, 2006.01] 	233/33 • • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring [5, 2006.01]
233/17	 • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom [5, 2006.01] 	• • having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino
233/18	 • • having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton [5, 2006.01] 	groups [5, 2006.01] 233/35 • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom [5, 2006.01]
233/19	 having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a saturated carbon skeleton containing rings [5, 2006.01] 	233/36 • • • • having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton [5, 2006.01]
233/20	 • • • having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01] • • • having the carbon atom of the carboxamide 	233/37 • • • • having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a saturated carbon skeleton containing rings [5, 2006.01]
233/21	group bound to an acyclic carbon atom of an unsaturated carbon skeleton containing rings other than six-membered aromatic	233/38 • • • • having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01]
233/22	rings [5, 2006.01] • • • • having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a carbon skeleton containing six-membered aromatic rings [5, 2006.01]	233/39 • • • having the carbon atom of the carboxamide group bound to an acyclic carbon atom of an unsaturated carbon skeleton containing rings other than six-membered aromatic rings [5, 2006.01]
233/23	 • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a ring other than a six- membered aromatic ring [5, 2006.01] 	233/40 • • • • having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a carbon skeleton containing six-membered aromatic rings [5, 2006.01]
233/24	 • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring [5, 2006.01] 	• • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a ring other than a sixmembered aromatic ring [5, 2006.01]
233/25	 • • • having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton [5, 2006.01] 	• • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring [5, 2006.01]
233/26	 • • • having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a saturated carbon skeleton containing rings [5, 2006.01] 	233/43 • • • • having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of a saturated carbon skeleton [5, 2006.01]
233/27	 • • • having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01] 	233/44 • • • • having the carbon atom of the carboxamide group bound to a carbon atom of an unsaturated carbon skeleton [5, 2006.01]
233/28	 having the carbon atom of the carboxamide group bound to an acyclic carbon atom of an unsaturated carbon skeleton containing rings other than six-membered aromatic 	• • having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01]
233/29	rings [5, 2006.01] • • • • having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a carbon skeleton containing six-membered	 • • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom [5, 2006.01] • • • having the carbon atom of the carboxamide
233/30	 aromatic rings [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by doubly-bound 	group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton [5, 2006.01] 233/48 • • • • having the carbon atom of the carboxamide
233/31	 oxygen atoms [5, 2006.01] with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group 	group bound to an acyclic carbon atom of a saturated carbon skeleton containing rings [5, 2006.01]
	by an acyclic carbon atom [5, 2006.01]	233/49 • • • having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01]

233/50	• • • having the carbon atom of the carboxamide group bound to an acyclic carbon atom of an unsaturated carbon skeleton containing rings	• • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom [5, 2006.01]
	other than six-membered aromatic rings [5, 2006.01]	233/69 • • • • of an acyclic saturated carbon skeleton [5, 2006.01]
233/51	 having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a 	233/70 • • • of a saturated carbon skeleton containing rings [5, 2006.01]
	carbon skeleton containing six-membered aromatic rings [5, 2006.01]	233/71 • • • • of an acyclic unsaturated carbon skeleton [5, 2006.01]
233/52	• • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a ring other than a six-	233/72 • • • • of an unsaturated carbon skeleton containing rings other than six-membered aromatic rings [5, 2006.01]
233/53	membered aromatic ring [5, 2006.01]with the substituted hydrocarbon radical bound	233/73 • • • • of a carbon skeleton containing six- membered aromatic rings [5, 2006.01]
	to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring [5, 2006.01]	• • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a ring other than a six-
233/54	 • • having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of a saturated carbon skeleton [5, 2006.01] 	membered aromatic ring [5, 2006.01] 233/75 • • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group
233/55	• • • having the carbon atom of the carboxamide group bound to a carbon atom of an	by a carbon atom of a six-membered aromatic ring [5, 2006.01]
233/56	unsaturated carbon skeleton [5, 2006.01] • having carbon atoms of carboxamide groups bound to carbon atoms of carboxyl groups, e.g.	• • having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by doubly-bound
233/57	oxamides [5, 2006.01]	oxygen atoms [5, 2006.01] 233/77 • having the nitrogen atom of at least one of the
	 having carbon atoms of carboxamide groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01] 	carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups [5, 2006.01]
233/58	 having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] 	• • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom [5, 2006.01]
233/59	 having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by halogen atoms 	• • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a ring other than a sixmembered aromatic ring [5, 2006.01]
233/60	 or by nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound 	• • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring [5, 2006.01]
233/61	 • having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by doubly-bound 	 having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01]
233/62	oxygen atoms [5, 2006.01] • having the nitrogen atom of at least one of the	233/82 • • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group
	carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino	by an acyclic carbon atom [5, 2006.01]
233/63	groups [5, 2006.01] • • having the nitrogen atom of at least one of the	skeleton [5, 2006.01]
255/05	carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl	233/84 • • • of a saturated carbon skeleton containing rings [5, 2006.01]
222/64	groups [5, 2006.01]	233/85 • • • of an acyclic unsaturated carbon skeleton [5, 2006.01]
233/64	 having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01] 	233/86 • • • • of an unsaturated carbon skeleton containing rings other than six-membered aromatic rings [5, 2006.01]
233/65	 having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon 	233/87 • • • • of a carbon skeleton containing six-membered aromatic rings [5, 2006.01]
233/66	radicals [5, 2006.01] • having the nitrogen atom of at least one of the	having nitrogen atoms of carboxamide groups bound to an acyclic carbon atom and to a carbon atom of a
	carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by halogen atoms	six-membered aromatic ring wherein at least one ortho-hydrogen atom has been replaced [5, 2006.01]
233/67	or by nitro or nitroso groups [5, 2006.01] • • having the nitrogen atom of at least one of the	• having nitrogen atoms of carboxamide groups quaternised [5, 2006.01]
	carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms [5, 2006.01]	• having nitrogen atoms of carboxamide groups further acylated [5, 2006.01]

233/91	 with carbon atoms of the carboxamide groups bound to acyclic carbon atoms [5, 2006.01] 	235/38 • • • having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom	
233/92	• • with at least one carbon atom of the carboxamide groups bound to a carbon atom of a six-membered	a six-membered aromatic ring [5, 2006.01] 235/40 • having carbon atoms of carboxamide groups bound	l to
	aromatic ring [5, 2006.01]	carbon atoms of rings other than six-membered aromatic rings and singly-bound oxygen atoms bou	ınd
235/00	Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen	to the same carbon skeleton [5, 2006.01] 235/42 • having carbon atoms of carboxamide groups bound	
235/02	 atoms [5, 2006.01] having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms 	carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same	
	bound to the same carbon skeleton [5, 2006.01]	carbon skeleton [5, 2006.01] 235/44 • with carbon atoms of carboxamide groups and	
235/04	 the carbon skeleton being acyclic and saturated [5, 2006.01] 	singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered	i
235/06	 having the nitrogen atoms of the carboxamide 	aromatic ring [5, 2006.01]	
	groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01]	235/46 • • • having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic	
235/08	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon 	carbon atoms [5, 2006.01]	_
	atom of a hydrocarbon radical substituted by	235/48 • • • having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carb	
	singly-bound oxygen atoms [5, 2006.01]	atom of a hydrocarbon radical substituted by	011
235/10	• • having the nitrogen atom of at least one of the	singly-bound oxygen atoms [5, 2006.01]	
	carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by	235/50 • • • having the nitrogen atom of at least one of the	
	nitrogen atoms not being part of nitro or nitroso	carboxamide groups bound to an acyclic carb atom of a hydrocarbon radical substituted by	OII
	groups [5, 2006.01]	nitrogen atoms not being part of nitro or nitro	SO
235/12	• • having the nitrogen atom of at least one of the	groups [5, 2006.01]	
	carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by	235/52 • • • having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carb	
	carboxyl groups [5, 2006.01]	atom of a hydrocarbon radical substituted by	OII
235/14	• • having the nitrogen atom of at least one of the	carboxyl groups [5, 2006.01]	
	carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic	235/54 • • • having the nitrogen atom of at least one of the	
	ring [5, 2006.01]	carboxamide groups bound to a carbon atom a ring other than a six-membered aromatic	01
235/16	 having the nitrogen atom of at least one of the 	ring [5, 2006.01]	
	carboxamide groups bound to a carbon atom of	235/56 • • having the nitrogen atom of at least one of the	
235/18	a six-membered aromatic ring [5, 2006.01]having at least one of the singly-bound oxygen	carboxamide groups bound to a carbon atom a six-membered aromatic ring [5, 2006.01]	10
2557 10	atoms further bound to a carbon atom of a six-	235/58 • • • with carbon atoms of carboxamide groups and	d
	membered aromatic ring, e.g.	singly-bound oxygen atoms, bound in ortho-	
235/20	phenoxyacetamides [5, 2006.01] • • • having the nitrogen atoms of the	position to carbon atoms of the same non- condensed six-membered aromatic	
233/20	carboxamide groups bound to hydrogen	ring [5, 2006.01]	
	atoms or to acyclic carbon	235/60 • • • having the nitrogen atoms of the	
235/22	atoms [5, 2006.01]	carboxamide groups bound to hydrogen atoms or to acyclic carbon	
233/22	• • • having the nitrogen atom of at least one of the carboxamide groups bound to a carbon	atoms [5, 2006.01]	
	atom of a ring other than a six-membered	235/62 • • • having the nitrogen atom of at least one of	
235/24	aromatic ring [5, 2006.01] • • • having the nitrogen atom of at least one of	the carboxamide groups bound to a carbon atom of a ring other than a six-membered	l
233/24	the carboxamide groups bound to a carbon	aromatic ring [5, 2006.01]	
	atom of a six-membered aromatic	235/64 • • • having the nitrogen atom of at least one of	
235/26	ring [5, 2006.01] • • the carbon skeleton being saturated and containing	the carboxamide groups bound to a carbon atom of a six-membered aromatic	l
255/20	rings [5, 2006.01]	ring [5, 2006.01]	
235/28	 the carbon skeleton being acyclic and unsaturated [5, 2006.01] 	• • with carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings	
235/30	• • the carbon skeleton being unsaturated and	being part of condensed ring systems and singly	-
	containing rings other than six-membered	bound oxygen atoms, bound to the same carbon skeleton [5, 2006.01]	
235/32	aromatic rings [5, 2006.01]the carbon skeleton containing six-membered	235/68 • having the nitrogen atom of at least one of the	
22,32	aromatic rings [5, 2006.01]	carboxamide groups bound to an acyclic carbon ato	m
235/34	• • having the nitrogen atoms of the carboxamide	and to a carbon atom of a six-membered aromatic ring wherein at least one ortho-hydrogen atom has	
	groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01]	been replaced [5, 2006.01]	
235/36	• • having the nitrogen atom of at least one of the	• having carbon atoms of carboxamide groups and	
	carboxamide groups bound to a carbon atom of	doubly-bound oxygen atoms bound to the same carbon skeleton [5, 2006.01]	
	a ring other than a six-membered aromatic ring [5, 2006.01]	Carbon Sacreton [3, 2000.01]	
	11119 [0, 2000/01]		

225 /52			
235/72	• • with the carbon atoms of the carboxamide groups bound to acyclic carbon atoms [5, 2006.01]	237/30	having the nitrogen atom of the carboxamide group bound to hydrogen atoms or to acyclic
235/74	 • of a saturated carbon skeleton [5, 2006.01] 		carbon atoms [5, 2006.01]
235/76	• • of an unsaturated carbon skeleton [5, 2006.01]	237/32	 having the nitrogen atom of the carboxamide
235/78	• • • the carbon skeleton containing		group bound to an acyclic carbon atom of a
233/70			hydrocarbon radical substituted by oxygen
	rings [5, 2006.01]		atoms [5, 2006.01]
235/80	 having carbon atoms of carboxamide groups 		
	and keto groups bound to the same carbon	237/34	 having the nitrogen atom of the carboxamide
	atom, e.g. acetoacetamides [5, 2006.01]		group bound to an acyclic carbon atom of a
225/02	_		hydrocarbon radical substituted by nitrogen atoms
235/82	• • with the carbon atom of at least one of the		not being part of nitro or nitroso
	carboxamide groups bound to a carbon atom of a		groups [5, 2006.01]
	ring other than a six-membered aromatic	237/36	
	ring [5, 2006.01]	23//30	having the nitrogen atom of the carboxamide
235/84	 with the carbon atom of at least one of the 		group bound to an acyclic carbon atom of a
	carboxamide groups bound to a carbon atom of a		hydrocarbon radical substituted by carboxyl
	six-membered aromatic ring [5, 2006.01]		groups [5, 2006.01]
235/86	 having the nitrogen atom of at least one of the 	237/38	 having the nitrogen atom of the carboxamide
233/00			group bound to a carbon atom of a ring other than
	carboxamide groups quaternised [5, 2006.01]		a six-membered aromatic ring [5, 2006.01]
235/88	 having the nitrogen atom of at least one of the 	237/40	 having the nitrogen atom of the carboxamide
	carboxamide groups further acylated [5, 2006.01]	23//40	• • naving the introgen atom of the carboxanine
			group bound to a carbon atom of a six-membered
237/00	Carboxylic acid amides, the carbon skeleton of the		aromatic ring [5, 2006.01]
	acid part being further substituted by amino	237/42	 having nitrogen atoms of amino groups bound to
	groups [5, 2006.01]		the carbon skeleton of the acid part, further
237/02			acylated [5, 2006.01]
23//02	having the carbon atoms of the carboxamide groups	237/44	 having carbon atoms of carboxamide groups,
	bound to acyclic carbon atoms of the carbon	23//44	amino groups and singly-bound oxygen atoms
	skeleton [5, 2006.01]		
237/04	 the carbon skeleton being acyclic and 		bound to carbon atoms of the same non-condensed
	saturated [5, 2006.01]		six-membered aromatic ring [5, 2006.01]
237/06	 having the nitrogen atoms of the carboxamide 	237/46	 having carbon atoms of carboxamide groups,
237700	groups bound to hydrogen atoms or to acyclic		amino groups and at least three atoms of bromine
			or iodine, bound to carbon atoms of the same non-
	carbon atoms [5, 2006.01]		condensed six-membered aromatic
237/08	• • having the nitrogen atom of at least one of the		ring [5, 2006.01]
	carboxamide groups bound to an acyclic carbon	227/40	
	atom of a hydrocarbon radical substituted by	237/48	having the carbon atom of at least one of the
	singly-bound oxygen atoms [5, 2006.01]		carboxamide groups bound to a carbon atom of a six-
237/10	* * * * * * * * * * * * * * * * * * * *		membered aromatic ring being part of a condensed
237/10	 having the nitrogen atom of at least one of the 		
237/10	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon 	237/50	membered aromatic ring being part of a condensed
237/10	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by 	237/50	membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01]having the nitrogen atom of at least one of the
237/10	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso 		 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01]
	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] 	237/50 237/52	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the
237/10	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the 		 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01]
	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon 	237/52	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01]
	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by 		 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds;
	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon 	237/52	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters
237/12	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] 	237/52 239/00	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01]
	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing 	237/52	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters
237/12	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] 	237/52 239/00	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01]
237/12	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and 	237/52 239/00	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01]
237/12 237/14 237/16	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] 	237/52 239/00 239/02 239/04	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01]
237/12	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and 	237/52 239/00 239/02 239/04 239/06	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01]
237/12 237/14 237/16	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] 	237/52 239/00 239/02 239/04	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or
237/12 237/14 237/16	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered 	239/00 239/02 239/04 239/06 239/08	membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] • having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] • having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] • Compounds containing nitrogen-to-halogen bonds [5, 2006.01] • N-halogenated amines [5, 2006.01] • N-halogenated carboxamides [5, 2006.01] • Hydroxylamino compounds or their ethers or esters [5, 2006.01]
237/12 237/14 237/16 237/18	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] 	237/52 239/00 239/02 239/04 239/06	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or
237/12 237/14 237/16	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] the carbon skeleton containing six-membered 	239/00 239/02 239/04 239/06 239/08	membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] • having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] • having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] • Compounds containing nitrogen-to-halogen bonds [5, 2006.01] • N-halogenated amines [5, 2006.01] • N-halogenated carboxamides [5, 2006.01] • Hydroxylamino compounds or their ethers or esters [5, 2006.01]
237/12 237/14 237/16 237/18 237/20	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] the carbon skeleton containing six-membered aromatic rings [5, 2006.01] 	239/00 239/02 239/04 239/06 239/08	membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] • having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] • having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] • Compounds containing nitrogen-to-halogen bonds [5, 2006.01] • N-halogenated amines [5, 2006.01] • N-halogenated carboxamides [5, 2006.01] • Hydroxylamino compounds or their ethers or esters [5, 2006.01] • having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted
237/12 237/14 237/16 237/18	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] the carbon skeleton containing six-membered aromatic rings [5, 2006.01] having nitrogen atoms of amino groups bound to 	239/00 239/02 239/04 239/06 239/08	membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] • having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] • having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] • Compounds containing nitrogen-to-halogen bonds [5, 2006.01] • N-halogenated amines [5, 2006.01] • N-halogenated carboxamides [5, 2006.01] • Hydroxylamino compounds or their ethers or esters [5, 2006.01] • having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals
237/12 237/14 237/16 237/18 237/20	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] the carbon skeleton containing six-membered aromatic rings [5, 2006.01] having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further 	239/00 239/02 239/04 239/06 239/08	membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] • having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] • having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] • Compounds containing nitrogen-to-halogen bonds [5, 2006.01] • N-halogenated amines [5, 2006.01] • N-halogenated carboxamides [5, 2006.01] • Hydroxylamino compounds or their ethers or esters [5, 2006.01] • having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso
237/12 237/14 237/16 237/18 237/20	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] the carbon skeleton containing six-membered aromatic rings [5, 2006.01] having nitrogen atoms of amino groups bound to 	239/00 239/02 239/04 239/06 239/08 239/10	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01]
237/12 237/14 237/16 237/18 237/20	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] the carbon skeleton containing six-membered aromatic rings [5, 2006.01] having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] 	239/00 239/02 239/04 239/06 239/08	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups
237/12 237/14 237/16 237/18 237/20 237/22	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] the carbon skeleton containing six-membered aromatic rings [5, 2006.01] having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] having the carbon atom of at least one of the 	239/00 239/02 239/04 239/06 239/08 239/10	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydroxylamino groups
237/12 237/14 237/16 237/18 237/20 237/22	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] the carbon skeleton containing six-membered aromatic rings [5, 2006.01] having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring 	239/00 239/02 239/04 239/06 239/08 239/10	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen
237/12 237/14 237/16 237/18 237/20 237/22	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings (5, 2006.01] the carbon skeleton containing six-membered aromatic rings [5, 2006.01] the carbon skeleton containing six-membered aromatic rings [5, 2006.01] having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the 	239/00 239/02 239/04 239/06 239/08 239/10	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydroxylamino groups
237/12 237/14 237/16 237/18 237/20 237/22 237/24	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] the carbon skeleton containing six-membered aromatic rings [5, 2006.01] having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] 	239/00 239/02 239/04 239/06 239/08 239/10	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen
237/12 237/14 237/16 237/18 237/20 237/22	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] the carbon skeleton containing six-membered aromatic rings [5, 2006.01] having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] of a ring being part of a condensed ring system 	239/00 239/02 239/04 239/06 239/08 239/10	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01]
237/12 237/14 237/16 237/18 237/20 237/22 237/24	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] the carbon skeleton containing six-membered aromatic rings [5, 2006.01] having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] of a ring being part of a condensed ring system formed by at least four rings, e.g. 	239/00 239/02 239/04 239/06 239/08 239/10	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon
237/12 237/14 237/16 237/18 237/20 237/22 237/24	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] the carbon skeleton containing six-membered aromatic rings [5, 2006.01] having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline [5, 2006.01] 	239/00 239/02 239/04 239/06 239/08 239/10	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen
237/12 237/14 237/16 237/18 237/20 237/22 237/24	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] the carbon skeleton containing six-membered aromatic rings [5, 2006.01] having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline [5, 2006.01] having the carbon atom of at least one of the 	239/00 239/02 239/04 239/06 239/08 239/10 239/12	membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01]
237/12 237/14 237/16 237/18 237/20 237/22 237/24	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] the carbon skeleton containing six-membered aromatic rings [5, 2006.01] having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a 	239/00 239/02 239/04 239/06 239/08 239/10	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydroxylamino groups further boun
237/12 237/14 237/16 237/18 237/20 237/22 237/24	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] the carbon skeleton containing six-membered aromatic rings [5, 2006.01] having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline [5, 2006.01] having the carbon atom of at least one of the 	239/00 239/02 239/04 239/06 239/08 239/10 239/12	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01]
237/12 237/14 237/16 237/18 237/20 237/22 237/24	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] the carbon skeleton containing six-membered aromatic rings [5, 2006.01] having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the 	239/00 239/02 239/04 239/06 239/08 239/10 239/12	membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01]
237/12 237/14 237/16 237/18 237/20 237/22 237/24	 having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] the carbon skeleton containing six-membered aromatic rings [5, 2006.01] having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a 	239/00 239/02 239/04 239/06 239/08 239/10 239/12	 membered aromatic ring being part of a condensed ring system of the same carbon skeleton [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01]

239/18	 having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by carboxyl groups [5, 2006.01] 	245/04	 with nitrogen atoms of azo groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]
239/20	 having oxygen atoms of hydroxylamino groups etherified [5, 2006.01] 	245/06	with nitrogen atoms of azo groups bound to carbon atoms of six-membered aromatic
239/22	 having oxygen atoms of hydroxylamino groups esterified [5, 2006.01] 	245/08	rings [5, 2006.01] • • with the two nitrogen atoms of azo groups
241/00	Preparation of compounds containing chains of nitrogen atoms singly-bound to each other, e.g.	245/10	bound to carbon atoms of six-membered aromatic rings, e.g. azobenzene [5, 2006.01] • • with nitrogen atoms of azo groups bound to
	hydrazines, triazanes [5, 2006.01]	2 107 10	carbon atoms of six-membered aromatic rings
241/02	• Preparation of hydrazines [5, 2006.01]		being part of condensed ring
241/04	• Preparation of hydrazides [5, 2006.01]		systems [5, 2006.01]
243/00	Compounds containing chains of nitrogen atoms	245/12	• Diazo compounds, i.e. compounds having the free valencies of N_2 groups attached to the same carbon
	singly-bound to each other, e.g. hydrazines,		atom [5, 2006.01]
	triazanes [5, 2006.01]	245/14	 having diazo groups bound to acyclic carbon
243/02	• N-nitro compounds [5, 2006.01]		atoms of a carbon skeleton [5, 2006.01]
243/04	 N-nitroso compounds [5, 2006.01] 	245/16	• • • Diazomethane [5, 2006.01]
243/06	 N-nitroso-amines [5, 2006.01] 	245/18	• • • the carbon skeleton being further substituted by
243/08	• • N-nitroso-carboxamides [5, 2006.01]	2.07.10	carboxyl groups [5, 2006.01]
243/10	• Hydrazines [5, 2006.01]	245/20	 Diazonium compounds [5, 2006.01]
243/12	 having nitrogen atoms of hydrazine groups bound 		-
243/12	to acyclic carbon atoms [5, 2006.01]	245/22	containing chains of three or more nitrogen atoms
0.40./4.4			with one or more nitrogen-to-nitrogen double
243/14	• • • of a saturated carbon skeleton [5, 2006.01]	0.45 /0.4	bonds [5, 2006.01]
243/16	• • • of an unsaturated carbon skeleton [5, 2006.01]	245/24	• Chains of only three nitrogen atoms, e.g.
243/18	• • • containing rings [5, 2006.01]		diazoamines [5, 2006.01]
243/20	having nitrogen atoms of hydrazine groups bound to carbon atoms of rings other than six-membered	247/00 247/02	Compounds containing azido groups [5, 2006.01] • with azido groups bound to acyclic carbon atoms of a
	aromatic rings [5, 2006.01]	247702	carbon skeleton [5, 2006.01]
243/22	 having nitrogen atoms of hydrazine groups bound 	247/04	 being saturated [5, 2006.01]
	to carbon atoms of six-membered aromatic	247/04	• • • and containing rings [5, 2006.01]
	rings [5, 2006.01]		
243/24	Hydrazines having nitrogen atoms of hydrazine	247/08	• • being unsaturated [5, 2006.01]
	groups acylated by carboxylic acids [5, 2006.01]	247/10	• • • and containing rings [5, 2006.01]
243/26	 with acylating carboxyl groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] 	247/12	 being further substituted by carboxyl groups [5, 2006.01]
243/28	• • to hydrogen atoms or to carbon atoms of a saturated carbon skeleton [5, 2006.01]	247/14	 with azido groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]
243/30	• • to carbon atoms of an unsaturated carbon skeleton [5, 2006.01]	247/16	with azido groups bound to carbon atoms of six- membered aromatic rings of a carbon
243/32	• • • the carbon skeleton containing	- 1 - / 1 - 0	skeleton [5, 2006.01]
243/34	rings [5, 2006.01] • • to carbon atoms of a carbon skeleton further	247/18	 being further substituted by carboxyl groups [5, 2006.01]
243/36	substituted by nitrogen atoms [5, 2006.01]with acylating carboxyl groups bound to carbon	247/20	 with azido groups acylated by carboxylic acids [5, 2006.01]
	atoms of rings other than six-membered aromatic rings [5, 2006.01]	247/22	with the acylating carboxyl groups bound to hydrogen atoms, to acyclic carbon atoms or to
243/38	with acylating carboxyl groups bound to carbon atoms of six-membered aromatic 15, 2006, 241	247/24	carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]
0.40.7.12	rings [5, 2006.01]	24//24	 with at least one of the acylating carboxyl groups bound to a carbon atom of a six-membered
243/40	 Hydrazines having nitrogen atoms of hydrazine groups being quaternised [5, 2006.01] 		aromatic ring [5, 2006.01]
243/42	 Hydrazines having nitrogen atoms of hydrazine groups further singly-bound to hetero atoms [5, 2006.01] 	249/00	Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton (of diazo compounds C07C 245/12) [5, 2006.01]
245/00	Compounds containing chains of at least two	249/02	• of compounds containing imino groups [5, 2006.01]
	nitrogen atoms with at least one nitrogen-to-nitrogen	249/04	• of oximes [5, 2006.01]
	multiple bond (azoxy compound C07C 291/08) [5, 2006.01]	249/06	by nitrosation of hydrocarbons or substituted hydrocarbons [5, 2006.01]
245/02	 Azo compounds, i.e. compounds having the free valencies of —N=N— groups attached to different 	249/08	by reaction of hydroxylamines with carbonyl compounds [5, 2006.01]
	atoms, e.g. diazohydroxides [5, 2006.01]	249/10	• • from nitro compounds or salts thereof [5, 2006.01]
		249/12	by reactions not involving the formation of oxyimino groups [5, 2006.01]

249/14	• • Separation; Purification; Stabilisation; Use of additives [5, 2006.01]	251/56	 • of hydrocarbon radicals substituted by doubly- bound oxygen atoms [5, 2006.01]
249/16	• of hydrazones [5, 2006.01]	251/58	• • • of hydrocarbon radicals substituted by nitrogen
251/00	Compounds containing nitrogen atoms doubly-		atoms not being part of nitro or nitroso groups [5, 2006.01]
	bound to a carbon skeleton (diazo compounds C07C 245/12) [5, 2006.01]	251/60	• • • of hydrocarbon radicals substituted by carboxyl groups [5, 2006.01]
251/02	• containing imino groups [5, 2006.01]	251/62	 having oxygen atoms of oxyimino groups
251/04	 having carbon atoms of imino groups bound to 	251/02	esterified [5, 2006.01]
	hydrogen atoms or to acyclic carbon	251/64	• • • by carboxylic acids [5, 2006.01]
	atoms [5, 2006.01]	251/66	• • • with the esterifying carboxyl groups bound
251/06	• • to carbon atoms of a saturated carbon skeleton [5, 2006.01]		to hydrogen atoms, to acyclic carbon atoms or to carbon atoms of rings other than six-
251/08	• • • • being acyclic [5, 2006.01]		membered aromatic rings [5, 2006.01]
251/10	• • to carbon atoms of an unsaturated carbon skeleton [5, 2006.01]	251/68	• • • with at least one of the esterifying carboxyl groups bound to a carbon atom of a six-
251/12	• • • being acyclic [5, 2006.01]		membered aromatic ring [5, 2006.01]
251/14	• • • containing rings other than six-membered	251/70	 Metal complexes of oximes [5, 2006.01]
	aromatic rings [5, 2006.01]	251/72	 Hydrazones [5, 2006.01]
251/16	• • • containing six-membered aromatic rings [5, 2006.01]	251/74	 having doubly-bound carbon atoms of hydrazone groups bound to hydrogen atoms or to acyclic
251/18	 having carbon atoms of imino groups bound to 		carbon atoms [5, 2006.01]
	carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]	251/76	• • • to carbon atoms of a saturated carbon skeleton [5, 2006.01]
251/20	 having carbon atoms of imino groups being part of rings other than six-membered aromatic 	251/78	 to carbon atoms of an unsaturated carbon skeleton [5, 2006.01]
251/22	rings [5, 2006.01] • • • Quinone imines [5, 2006.01]	251/80	• • • the carbon skeleton containing
251/24	having carbon atoms of imino groups bound to	251/82	rings [5, 2006.01]
201/24	carbon atoms of six-membered aromatic rings [5, 2006.01]	231/02	 having doubly-bound carbon atoms of hydrazone groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]
251/26	having nitrogen atoms of imino groups further	251/84	 having doubly-bound carbon atoms of hydrazone
251 /20	bound to halogen atoms [5, 2006.01]		groups being part of rings other than six-
251/28	 having nitrogen atoms of imino groups acylated [5, 2006.01] 	251/86	membered aromatic rings [5, 2006.01]having doubly-bound carbon atoms of hydrazone
251/30	 having nitrogen atoms of imino groups 	231/60	groups bound to carbon atoms of six-membered
054 (00	quaternised [5, 2006.01]	054 /00	aromatic rings [5, 2006.01]
251/32	• Oximes [5, 2006.01]	251/88	 having also the other nitrogen atom doubly-bound to a carbon atom, e.g. azines [5, 2006.01]
251/34	 with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of 		to a carbon atom, e.g. azmes [3, 2000.01]
	unsubstituted hydrocarbon radicals [5, 2006.01]	253/00	Preparation of carboxylic acid nitriles (of cyanogen
251/36	• • • with the carbon atoms of the oxyimino groups		or compounds thereof C01C 3/00) [5, 2006.01]
2017.00	bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01]	253/02	 by reaction of nitrogen oxide with organic compounds [5, 2006.01]
251/38	• • • • to carbon atoms of a saturated carbon	253/04	 by reaction of cyanogen halides, e.g. ClCN, with
	skeleton [5, 2006.01]		organic compounds [5, 2006.01]
251/40	 to carbon atoms of an unsaturated carbon 	253/06	 from N-formylated amino compounds [5, 2006.01]
	skeleton [5, 2006.01]	253/08	 by addition of hydrogen cyanide or salts thereof to
251/42	 • with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a 	253/10	unsaturated compounds [5, 2006.01]to compounds containing carbon-to-carbon double
	ring other than a six-membered aromatic	0=0/40	bonds [5, 2006.01]
251/44	ring [5, 2006.01] • • with the carbon atom of at least one of the	253/12	 to compounds containing carbon-to-carbon triple bonds [5, 2006.01]
	oxyimino groups being part of a ring other than	253/14	 by reaction of cyanides with halogen-containing
	a six-membered aromatic ring [5, 2006.01]		compounds with replacement of halogen atoms by
251/46	• • • • Quinone oximes [5, 2006.01]		cyano groups [5, 2006.01]
251/48	 • with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] 	253/16	 by reaction of cyanides with lactones or compounds containing hydroxy groups or etherified or esterified hydroxy groups [5, 2006.01]
251/50	having oxygen atoms of oxyimino groups bound	253/18	 by reaction of ammonia or amines with compounds
2017.00	to carbon atoms of substituted hydrocarbon radicals [5, 2006.01]		containing carbon-to-carbon multiple bonds other than in six-membered aromatic rings [5, 2006.01]
251/52	• • • of hydrocarbon radicals substituted by halogen	253/20	 by dehydratation of carboxylic acid
	atoms or by nitro or nitroso groups [5, 2006.01]	:	amides [5, 2006.01]
251/54	• • of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01]	253/22	 by reaction of ammonia with carboxylic acids with replacement of carboxyl groups by cyano groups [5, 2006.01]
			<u> </u>

253/24	 by ammoxidation of hydrocarbons or substituted hydrocarbons [5, 2006.01] 	255/24 • • containing cyano groups and singly-bound nitrogen atoms, not being further bound to other
253/26	 containing carbon-to-carbon multiple bonds, e.g. 	hetero atoms, bound to the same saturated acyclic
253/28	unsaturated aldehydes [5, 2006.01]containing six-membered aromatic rings, e.g.	carbon skeleton [5, 2006.01] 255/25 • • • Aminoacetonitriles [5, 2006.01]
233/20	styrene [5, 2006.01]	255/26 • • • containing cyano groups, amino groups and
253/30	 by reactions not involving the formation of cyano groups [5, 2006.01] 	singly-bound oxygen atoms bound to the carbon skeleton [5, 2006.01]
253/32	 Separation; Purification; Stabilisation; Use of additives [5, 2006.01] 	255/27 • • • containing cyano groups, amino groups and doubly-bound oxygen atoms bound to the
253/34	• • Separation; Purification [5, 2006.01]	carbon skeleton [5, 2006.01]
255/00	Carboxylic acid nitriles (cyanogen or compounds thereof C01C 3/00) [5, 2006.01]	255/28 • • • containing cyano groups, amino groups and carboxyl groups, other than cyano groups, bound to the carbon skeleton [5, 2006.01]
255/01	 having cyano groups bound to acyclic carbon atoms [5, 2006.01] 	255/29 • • • containing cyano groups and acylated amino groups bound to the carbon
255/02	of an acyclic and saturated carbon	skeleton [5, 2006.01]
255/02	skeleton [5, 2006.01] • • • Mononitriles [5, 2006.01]	255/30 • • containing cyano groups and singly-bound nitrogen atoms, not being further bound to other
255/03 255/04	containing two cyano groups bound to the	hetero atoms, bound to the same unsaturated
255701	carbon skeleton [5, 2006.01]	acyclic carbon skeleton [5, 2006.01]
255/05	 containing at least three cyano groups bound to the carbon skeleton [5, 2006.01] 	• • having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing rings other
255/06	of an acyclic and unsaturated carbon	than six-membered aromatic rings [5, 2006.01] 255/32 • having cyano groups bound to acyclic carbon
255/07	skeleton [5, 2006.01] • • • Mononitriles [5, 2006.01]	atoms of a carbon skeleton containing at least one
255/08	• • • Acrylonitrile; Methacrylonitrile [5, 2006.01]	six-membered aromatic ring [5, 2006.01]
255/09	• • • containing at least two cyano groups bound to the carbon skeleton [5, 2006.01]	255/33 • • • with cyano groups linked to the six-membered aromatic ring, or to the condensed ring system
255/10	 containing cyano groups and halogen atoms, or 	containing that ring, by saturated carbon chains [5, 2006.01]
	nitro or nitroso groups, bound to the same acyclic carbon skeleton [5, 2006.01]	255/34 • • • with cyano groups linked to the six-membered
255/11	 containing cyano groups and singly-bound oxygen 	aromatic ring, or to the condensed ring system containing that ring, by unsaturated carbon
	atoms bound to the same saturated acyclic carbon	chains [5, 2006.01]
255/12	skeleton [5, 2006.01] • • • containing cyano groups and hydroxy groups	255/35 • • • the carbon skeleton being further substituted by
233/12	bound to the carbon skeleton [5, 2006.01]	halogen atoms, or by nitro or nitroso groups [5, 2006.01]
255/13	• • • containing cyano groups and etherified hydroxy groups bound to the carbon	255/36 • • • the carbon skeleton being further substituted by hydroxy groups [5, 2006.01]
255/14	skeleton [5, 2006.01] • • • containing cyano groups and esterified hydroxy	255/37 • • • the carbon skeleton being further substituted by
233/14	groups bound to the carbon	etherified hydroxy groups [5, 2006.01] 255/38 • • • the carbon skeleton being further substituted by
DEE /45	skeleton [5, 2006.01]	esterified hydroxy groups [5, 2006.01]
255/15	 containing cyano groups and singly-bound oxygen atoms bound to the same unsaturated acyclic 	255/39 • • • with hydroxy groups esterified by derivatives of 2,2-dimethylcyclopropane
	carbon skeleton [5, 2006.01]	carboxylic acids, e.g. chrysanthemumic
255/16	 containing cyano groups and singly-bound oxygen atoms bound to the same carbon atom of an 	acids [5, 2006.01]
	acyclic carbon skeleton [5, 2006.01]	255/40 • • • the carbon skeleton being further substituted by doubly-bound oxygen atoms [5, 2006.01]
255/17	 containing cyano groups and doubly-bound 	255/41 • • • the carbon skeleton being further substituted by
	oxygen atoms bound to the same acyclic carbon skeleton [5, 2006.01]	carboxyl groups, other than cyano groups [5, 2006.01]
255/18	 containing cyano groups bound to carbon atoms of carboxyl groups [5, 2006.01] 	255/42 • • • the carbon skeleton being further substituted by singly-bound nitrogen atoms, not being further
255/19	 containing cyano groups and carboxyl groups, other than cyano groups, bound to the same 	bound to other hetero atoms [5, 2006.01] 255/43 • • • the carbon skeleton being further substituted
255/20	saturated acyclic carbon skeleton [5, 2006.01]	by singly-bound oxygen atoms [5, 2006.01]
255/20	• • • the carbon skeleton being further substituted by singly-bound oxygen atoms [5, 2006.01]	255/44 • • • at least one of the singly-bound nitrogen atoms being acylated [5, 2006.01]
255/21	 • the carbon skeleton being further substituted by doubly-bound oxygen atoms [5, 2006.01] 	• having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]
255/22	containing cyano groups and at least two	255/46 • to carbon atoms of non-condensed
	carboxyl groups bound to the carbon skeleton [5, 2006.01]	rings [5, 2006.01]
255/23	 containing cyano groups and carboxyl groups, other than cyano groups, bound to the same unsaturated acyclic carbon skeleton [5, 2006.01] 	• • to carbon atoms of rings being part of condensed ring systems [5, 2006.01]

		263/06	halides [5, 2006.01] • from or <u>via</u> ureas [5, 2006.01]
	bound to hydrogen atoms, to acyclic carbon atoms, or to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]	263/04	derivatives [5, 2006.01] • from or <u>via</u> carbamates or carbamoyl
257/06	 carboxyl group, e.g. imino-ethers [5, 2006.01] having carbon atoms of imino-carboxyl groups 	263/02	acid [5, 2006.01]by reaction of halides with isocyanic acid or its
257/04	halides [5, 2006.01] • without replacement of the other oxygen atom of the	263/00	C01C 3/16) [5, 2006.01] Preparation of derivatives of isocyanic
257/02	 with replacement of the other oxygen atom of the carboxyl group by halogen atoms, e.g. imino- 	261/02 261/04	 Cyanates [5, 2006.01] Cyanamides (unsubstituted cyanamide Col. Col. (2/16) [5, 2006.01]
237 / U U	Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines [5, 2006.01]	261/00	groups bound to another nitrogen atom [5, 2006.01] Derivatives of cyanic acid [5, 2006.01]
257/00	the same carbon skeleton [5, 2006.01]	259/20	 bound to carbon atoms of six-membered aromatic rings [5, 2006.01] • with at least one nitrogen atom of hydroxyamidine
255/66	 naving cyano groups and nitrogen atoms being part of hydrazine or hydrazone groups bound to the same carbon skeleton [5, 2006.01] having cyano groups and azido groups bound to 	259/18	 bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01] having carbon atoms of hydroxyamidine groups
255/65 255/66	 with the nitrogen atoms further bound to nitrogen atoms [5, 2006.01] having cyano groups and nitrogen atoms being 	259/16	atoms [5, 2006.01]having carbon atoms of hydroxyamidine groups
255/64	• • with the nitrogen atoms further bound to oxygen atoms [5, 2006.01]	259/14	having carbon atoms of hydroxyamidine groups bound to hydrogen atoms or to acyclic carbon
	bound to other hetero atoms, other than oxygen atoms of nitro or nitroso groups, bound to the same carbon skeleton [5, 2006.01]	259/12	 with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. N-hydroxyamidines [5, 2006.01]
255/63	skeleton [5, 2006.01] containing cyano groups and nitrogen atoms further	259/10	 having carbon atoms of hydroxamic groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01]
255/62	 skeleton [5, 2006.01] containing cyano groups and oxygen atoms being part of oxyimino groups bound to the same carbon 		to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]
255/61	 containing cyano groups and nitrogen atoms being part of imino groups bound to the same carbon 	259/08	to hydrogen atoms or to acyclic carbon atoms [5, 2006.01]having carbon atoms of hydroxamic groups bound
255/60	 singly-bound oxygen atoms [5, 2006.01] at least one of the singly-bound nitrogen atoms being acylated [5, 2006.01] 	259/06	carboxyl group, e.g. hydroxamic acids [5, 2006.01]having carbon atoms of hydroxamic groups bound
255/59	 skeleton [5, 2006.01] the carbon skeleton being further substituted by singly bound avygen atoms [5, 2006.01] 	259/02	 with replacement of the other oxygen atom of the carboxyl group by halogen atoms [5, 2006.01] without replacement of the other oxygen atom of the
255/58	 containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon 	259/02	nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups [5, 2006.01] • with replacement of the other oxygen atom of the
255/57	 containing cyano groups and carboxyl groups, other than cyano groups, bound to the carbon skeleton [5, 2006.01] 	259/00	Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a
255/56	 containing cyano groups and doubly-bound oxygen atoms bound to the carbon skeleton [5, 2006.01] 	257/22	 having nitrogen atoms of amidino groups further bound to nitrogen atoms, e.g. hydrazidines [5, 2006.01]
255/55	 containing cyano groups and esterified hydroxy groups bound to the carbon skeleton [5, 2006.01] 	257/20	 having nitrogen atoms of amidino groups acylated [5, 2006.01]
255/54	 bound to the carbon skeleton [5, 2006.01] containing cyano groups and etherified hydroxy groups bound to the carbon skeleton [5, 2006.01] 	257/18	 having carbon atoms of amidino groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01]
255/53	being part of condensed ring systems [5, 2006.01]containing cyano groups and hydroxy groups		carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]
255/52	the carbon skeleton [5, 2006.01] • to carbon atoms of six-membered aromatic rings	257/14	acyclic carbon atoms [5, 2006.01] • having carbon atoms of amidino groups bound to
255/50 255/51	 to carbon atoms of non-condensed six-membered aromatic rings [5, 2006.01] containing at least two cyano groups bound to 	257/12 257/14	 having carbon atoms of amidino groups bound to hydrogen atoms [5, 2006.01] having carbon atoms of amidino groups bound to
255/49	 having cyano groups bound to carbon atoms of six- membered aromatic rings of a carbon skeleton [5, 2006.01] 	257/10	 with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines [5, 2006.01]
255/48	• to carbon atoms of 2,2-dimethylcyclopropane rings, e.g. nitrile of chrysanthemumic acids [5, 2006.01]	257/08	 having carbon atoms of imino-carboxyl groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01]
255/40		257/00	having and an atoms of inside and and ground

263/08	 from or <u>via</u> heterocyclic compounds, e.g. pyrolysis of furoxans [5, 2006.01] 	271/10	• • • with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic	c
263/10	• by reaction of amines with carbonyl halides, e.g. with phosgene [5, 2006.01]	271/12	carbon atoms [5, 2006.01] • • • to hydrogen atoms or to carbon atoms of	
263/12	 from or via nitrogen analogues of carboxylic acids, 	2/1/12	unsubstituted hydrocarbon	
2007 12	e.g. from hydroxamic acids, involving a Hofmann,		radicals [5, 2006.01]	
	Curtius or Lossen-type rearrangement (C07C 209/56	271/14	• • • to carbon atoms of hydrocarbon radicals	
	takes precedence) [5, 2006.01]		substituted by halogen atoms or by nitro o	r
263/14	by catalytic reaction of nitro compounds with carbon		nitroso groups [5, 2006.01]	
	monoxide [5, 2006.01]	271/16	• • • to carbon atoms of hydrocarbon radicals	
263/16	 by reactions not involving the formation of isocyanate groups [5, 2006.01] 		substituted by singly-bound oxygen atoms [5, 2006.01]	
263/18	• Separation; Purification; Stabilisation; Use of	271/18	• • • • to carbon atoms of hydrocarbon radicals	
203/10	additives [5, 2006.01]	2, 1, 10	substituted by doubly-bound oxygen	
263/20	• • Separation; Purification [5, 2006.01]		atoms [5, 2006.01]	
		271/20	• • • to carbon atoms of hydrocarbon radicals	
265/00	Derivatives of isocyanic acid [5, 2006.01]		substituted by nitrogen atoms not being pa	ırt
265/02	 having isocyanate groups bound to acyclic carbon atoms [5, 2006.01] 	271/22	of nitro or nitroso groups [5, 2006.01] • • • • to carbon atoms of hydrocarbon radicals	
265/04	• • of a saturated carbon skeleton [5, 2006.01]	2/1/22	substituted by carboxyl groups [5, 2006.01	11
265/06	• • of an unsaturated carbon skeleton [5, 2006.01]	271/24	• • • with the nitrogen atom of at least one of the	-,
265/08	the carbon skeleton containing		carbamate groups bound to a carbon atom of	a
203700	rings [5, 2006.01]		ring other than a six-membered aromatic	
265/10	 having isocyanate groups bound to carbon atoms of 		ring [5, 2006.01]	
	rings other than six-membered aromatic	271/26	• • with the nitrogen atom of at least one of the	
	rings [5, 2006.01]		carbamate groups bound to a carbon atom of six-membered aromatic ring [5, 2006.01]	a
265/12	• having isocyanate groups bound to carbon atoms of	271/28	• • • to a carbon atom of a non-condensed six-	
265/14	six-membered aromatic rings [5, 2006.01] containing at least two isocyanate groups bound to		membered aromatic ring [5, 2006.01]	
203/14	the same carbon skeleton [5, 2006.01]	271/30	• • • to a carbon atom of a six-membered	
265/16	 having isocyanate groups acylated [5, 2006.01] 		aromatic ring being part of a condensed ring	ng
0.05 /0.0	C 1 1" 11 [F 2000 04]	271/32	system [5, 2006.01] • having oxygen atoms of carbamate groups boun	А
267/00	Carbodiimides [5, 2006.01]	2/1/32		
			to carbon atoms of rings other than six-members	₹U
269/00	Preparation of derivatives of carbamic acid, i.e.		to carbon atoms of rings other than six-members aromatic rings [5, 2006.01]	eu
269/00	compounds containing any of the groups	271/34	aromatic rings [5, 2006.01]with the nitrogen atoms of the carbamate	
269/00	compounds containing any of the groups	271/34	 aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic 	
269/00			 aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] 	
269/00	compounds containing any of the groups O O- N-C-O- N-C-Hal, -N=C-O- O- Hal	271/34 271/36	 aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the 	С
269/00	compounds containing any of the groups O O O- N-C-O-, N-C-Hal, -N-C-O-, O- Hal		 aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] 	С
269/00	compounds containing any of the groups O O- N-C-O- N-C-Hal, -N=C-O- O- Hal		 with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] 	С
269/00 269/02	compounds containing any of the groups O O- N-C-O- N-C-Hal, -N=C-O- O- Hal -N=C-Hal or -N=C-Hal the nitrogen atom not being part of nitro or nitroso groups [5, 2006.01] from isocyanates with formation of carbamate		 with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the 	c a
269/02	compounds containing any of the groups O O- N-C-O- N-C-Hal, -N-C-O- O- Hal -N-C-Hal or -N-C-Hal the nitrogen atom not being part of nitro or nitroso groups [5, 2006.01] • from isocyanates with formation of carbamate groups [5, 2006.01]	271/36	 with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of 	c a
	compounds containing any of the groups O O- N-C-O- N-C-Hal, -N=C-O- O- Hal -N=C-Hal or -N=C-Hal the nitrogen atom not being part of nitro or nitroso groups [5, 2006.01] • from isocyanates with formation of carbamate groups [5, 2006.01] • from amines with formation of carbamate	271/36 271/38	 with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of six-membered aromatic ring [5, 2006.01] 	c a a
269/02 269/04	compounds containing any of the groups O O- N-C-O- N-C-Hal, -N=C-O- O- Hal -N=C-Hal or -N=C-Hal the nitrogen atom not being part of nitro or nitroso groups [5, 2006.01] • from isocyanates with formation of carbamate groups [5, 2006.01] • from amines with formation of carbamate groups [5, 2006.01]	271/36	 with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of 	c a a
269/02	compounds containing any of the groups O O- N-C-O- N-C-Hal, -N=C-O- O- Hal -N=C-Hal or -N=C-Hal the nitrogen atom not being part of nitro or nitroso groups [5, 2006.01] • from isocyanates with formation of carbamate groups [5, 2006.01] • from amines with formation of carbamate groups [5, 2006.01]	271/36 271/38	 aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of six-membered aromatic ring [5, 2006.01] having oxygen atoms of carbamate groups boun 	c a a
269/02 269/04 269/06	compounds containing any of the groups O O O- N-C-O- N-C-Hal, -N=C-O- O- Hal -N=C-Hal or -N=C-Hal the nitrogen atom not being part of nitro or nitroso groups [5, 2006.01] • from isocyanates with formation of carbamate groups [5, 2006.01] • from amines with formation of carbamate groups [5, 2006.01] • by reactions not involving the formation of carbamate groups [5, 2006.01]	271/36 271/38	 aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of six-membered aromatic ring [5, 2006.01] having oxygen atoms of carbamate groups boun to carbon atoms of six-membered aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate 	c a a
269/02 269/04	compounds containing any of the groups O O- N-C-O- N-C-Hal, -N=C-O- O- Hal -N=C-Hal or -N=C-Hal the nitrogen atom not being part of nitro or nitroso groups [5, 2006.01] • from isocyanates with formation of carbamate groups [5, 2006.01] • from amines with formation of carbamate groups [5, 2006.01]	271/36 271/38 271/40	 aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of six-membered aromatic ring [5, 2006.01] having oxygen atoms of carbamate groups boun to carbon atoms of six-membered aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic 	c a a
269/02 269/04 269/06 269/08	compounds containing any of the groups O O O- N-C-O- N-C-Hal, -N=C-O- O- Hal -N=C-Hal or -N=C-Hal the nitrogen atom not being part of nitro or nitroso groups [5, 2006.01] from isocyanates with formation of carbamate groups [5, 2006.01] from amines with formation of carbamate groups [5, 2006.01] by reactions not involving the formation of carbamate groups [5, 2006.01] Separation; Purification; Stabilisation; Use of additives [5, 2006.01]	271/36 271/38 271/40 271/42	 aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of six-membered aromatic ring [5, 2006.01] having oxygen atoms of carbamate groups boun to carbon atoms of six-membered aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] 	c a a
269/02 269/04 269/06	compounds containing any of the groups O O O- N-C-O- N-C-Hal, -N=C-O- O- Hal -N=C-Hal or -N=C-Hal the nitrogen atom not being part of nitro or nitroso groups [5, 2006.01] from isocyanates with formation of carbamate groups [5, 2006.01] from amines with formation of carbamate groups [5, 2006.01] by reactions not involving the formation of carbamate groups [5, 2006.01] Separation; Purification; Stabilisation; Use of additives [5, 2006.01]	271/36 271/38 271/40	 aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of six-membered aromatic ring [5, 2006.01] having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of 	c a a
269/02 269/04 269/06 269/08	compounds containing any of the groups O O O- N-C-O- N-C-Hal, -N=C-O- O- Hal -N=C-Hal or -N=C-Hal the nitrogen atom not being part of nitro or nitroso groups [5, 2006.01] from isocyanates with formation of carbamate groups [5, 2006.01] from amines with formation of carbamate groups [5, 2006.01] by reactions not involving the formation of carbamate groups [5, 2006.01] Separation; Purification; Stabilisation; Use of additives [5, 2006.01] Derivatives of carbamic acid, i.e. compounds containing any of the groups	271/36 271/38 271/40 271/42	 aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of six-membered aromatic ring [5, 2006.01] having oxygen atoms of carbamate groups boun to carbon atoms of six-membered aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] 	c a a
269/02 269/04 269/06 269/08	compounds containing any of the groups O O O O O O O O O O O O O O O O O O O	271/36 271/38 271/40 271/42	 with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of six-membered aromatic ring [5, 2006.01] having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals 	c a add
269/02 269/04 269/06 269/08	compounds containing any of the groups O O O- N-C-O- N-C-Hal, -N=C-O- O- Hal -N=C-Hal or -N=C-Hal the nitrogen atom not being part of nitro or nitroso groups [5, 2006.01] • from isocyanates with formation of carbamate groups [5, 2006.01] • from amines with formation of carbamate groups [5, 2006.01] • by reactions not involving the formation of carbamate groups [5, 2006.01] • Separation; Purification; Stabilisation; Use of additives [5, 2006.01] Derivatives of carbamic acid, i.e. compounds containing any of the groups O O- N-C-O- N-C-Hal, -N=C-O-	271/36 271/38 271/40 271/42 271/44	 aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of six-membered aromatic ring [5, 2006.01] having oxygen atoms of carbamate groups bount to carbon atoms of six-membered aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro or 	c a a d
269/02 269/04 269/06 269/08	compounds containing any of the groups O O O- N-C-O- N-C-Hal, -N=C-O- O- Hal -N=C-Hal or -N=C-Hal the nitrogen atom not being part of nitro or nitroso groups [5, 2006.01] • from isocyanates with formation of carbamate groups [5, 2006.01] • from amines with formation of carbamate groups [5, 2006.01] • by reactions not involving the formation of carbamate groups [5, 2006.01] • Separation; Purification; Stabilisation; Use of additives [5, 2006.01] Derivatives of carbamic acid, i.e. compounds containing any of the groups O O- N-C-O- N-C-Hal, -N=C-O- O- Hal	271/36 271/38 271/40 271/42 271/44 271/46	 with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of six-membered aromatic ring [5, 2006.01] having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro on nitroso groups [5, 2006.01] 	c a a d
269/02 269/04 269/06 269/08	compounds containing any of the groups O O O O O O O O O O O O O O O O O O O	271/36 271/38 271/40 271/42 271/44	 aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of six-membered aromatic ring [5, 2006.01] having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro on nitroso groups [5, 2006.01] to carbon atoms of hydrocarbon radicals 	c a add
269/02 269/04 269/06 269/08 271/00	compounds containing any of the groups O O O O O O O O O O O O O O O O O O O	271/36 271/38 271/40 271/42 271/44 271/46	 with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of six-membered aromatic ring [5, 2006.01] having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro on nitroso groups [5, 2006.01] 	c a add
269/02 269/04 269/06 269/08	compounds containing any of the groups O O O O O O O O O O O O O O O O O O O	271/36 271/38 271/40 271/42 271/44 271/46	 aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of six-membered aromatic ring [5, 2006.01] having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro on nitroso groups [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals 	c a add
269/02 269/04 269/06 269/08 271/00	compounds containing any of the groups O O O O O O O O O O O O O O O O O O O	271/36 271/38 271/40 271/42 271/44 271/46 271/48	 aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of six-membered aromatic ring [5, 2006.01] having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro on nitroso groups [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen 	c a add
269/02 269/04 269/06 269/08 271/00 271/02	compounds containing any of the groups O	271/36 271/38 271/40 271/42 271/44 271/46 271/48 271/50	 with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of six-membered aromatic ring [5, 2006.01] having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro on nitroso groups [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] 	c a add
269/02 269/04 269/06 269/08 271/00 271/02 271/04 271/06	compounds containing any of the groups O	271/36 271/38 271/40 271/42 271/44 271/46 271/48	 aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of six-membered aromatic ring [5, 2006.01] having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro on nitroso groups [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] 	c a a a d c
269/02 269/04 269/06 269/08 271/00 271/02	compounds containing any of the groups O	271/36 271/38 271/40 271/42 271/44 271/46 271/48 271/50	 with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of six-membered aromatic ring [5, 2006.01] having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro on nitroso groups [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] 	c a a a d c
269/02 269/04 269/06 269/08 271/00 271/02 271/04 271/06	compounds containing any of the groups O	271/36 271/38 271/40 271/42 271/44 271/46 271/48 271/50	 with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of six-membered aromatic ring [5, 2006.01] having oxygen atoms of carbamate groups boun to carbon atoms of six-membered aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro on nitroso groups [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being pa of nitro or nitroso groups [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being pa of nitro or nitroso groups [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being pa of nitro or nitroso groups [5, 2006.01] 	a a a d C
269/02 269/04 269/06 269/08 271/00 271/02 271/04 271/06	compounds containing any of the groups O	271/36 271/38 271/40 271/42 271/44 271/46 271/48 271/50 271/52	 with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of six-membered aromatic ring [5, 2006.01] having oxygen atoms of carbamate groups bount to carbon atoms of six-membered aromatic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro on nitroso groups [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being paof nitro or nitroso groups [5, 2006.01] 	c a a d c

271/56	• • • with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a	275/16	• • • being further substituted by carboxyl groups [5, 2006.01]
	ring other than a six-membered aromatic ring [5, 2006.01]	275/18	 of a saturated carbon skeleton containing rings [5, 2006.01]
271/58	• • • with the nitrogen atom of at least one of the	275/20	• • of an unsaturated carbon skeleton [5, 2006.01]
	carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01]	275/22	• • containing rings other than six-membered aromatic rings [5, 2006.01]
271/60	 having oxygen atoms of carbamate groups bound to 	275/24	containing six-membered aromatic
a=4 / Ca	nitrogen atoms [5, 2006.01]		rings [5, 2006.01]
271/62	 Compounds containing any of the groups N N 	275/26	 having nitrogen atoms of urea groups bound to
	Ô X Ö X -O-C-N-C Hal-C-N-C		carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]
	Y	275/28	 having nitrogen atoms of urea groups bound to
	n x n x	2/3/20	carbon atoms of six-membered aromatic rings of a
	O X O X -O-C-N=C or Hal-C-N=C		carbon skeleton [5, 2006.01]
	Y X being a hetero	275/30	• • being further substituted by halogen atoms, or by
	atom, Y being any atom, e.g. N-	275/32	nitro or nitroso groups [5, 2006.01] • being further substituted by singly-bound oxygen
271 /64	acylcarbamates [5, 2006.01]	2/3/32	atoms [5, 2006.01]
271/64	 Y being a hydrogen or a carbon atom, e.g. benzoylcarbamates [5, 2006.01] 	275/34	 having nitrogen atoms of urea groups and
271/66	• Y being a hetero atom [5, 2006.01]		singly-bound oxygen atoms bound to carbon
271/68			atoms of the same non-condensed six- membered aromatic ring [5, 2006.01]
	Compounds containing any of the groups O- O- Hal -N=C or -N=C Hal [5, 2006.01]	275/36	• • • • with at least one of the oxygen atoms further
	-N=C -N=C or -N=C		bound to a carbon atom of a six-membered
	U- Hai Hai [5, 2006.01]		aromatic ring, e.g. N- aryloxyphenylureas [5, 2006.01]
273/00	Preparation of urea or its derivatives, i.e. compounds	275/38	 being further substituted by doubly-bound oxygen
275700	containing any of the groups	2/5/50	atoms [5, 2006.01]
	0 N- N-	275/40	• • being further substituted by nitrogen atoms not
	O N- N- N-C-N(, N-C-O- or N-C-Hal the nitrogen atoms	275 / 42	being part of nitro or nitroso groups [5, 2006.01]
a=2 (aa	not being part of nitro or nitroso groups [5, 2006.01]	275/42	 being further substituted by carboxyl groups [5, 2006.01]
273/02	 of urea, its salts, complexes or addition compounds [5, 2006.01] 	275/44	 having nitrogen atoms of urea groups doubly-bound
273/04	 from carbon dioxide and ammonia [5, 2006.01] 		to carbon atoms [5, 2006.01]
273/04	from cyanamide or calcium	275/46	containing any of the groups
	cyanamide [5, 2006.01]		U X U X
273/08	• • from ammoniacal liquor [5, 2006.01]		N-C-N-C or N-C-N=C
273/10	• • combined with the synthesis of		Y X being a hetero atom, Y being any atom, e.g. acylureas [5, 2006.01]
273/12	ammonia [5, 2006.01]	275/48	 Y being a hydrogen or a carbon atom [5, 2006.01]
2/3/12	 combined with the synthesis of melamine [5, 2006.01] 	275/50	Y being a hydrogen or an acyclic carbon
273/14	• • Separation; Purification; Stabilisation; Use of		atom [5, 2006.01]
050/46	additives [5, 2006.01]	275/52	 Y being a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01]
273/16 273/18	• • Separation; Purification [5, 2006.01]• of substituted ureas [5, 2006.01]	275/54	Y being a carbon atom of a six-membered
10/10/10	or substituted areas [3, 2000.01]	-/ - -	aromatic ring, e.g. benzoylureas [5, 2006.01]
275/00	Derivatives of urea, i.e. compounds containing any of	275/56	• • • X being a nitrogen atom [5, 2006.01]
	U N- N-	275/58	 Y being a hetero atom [5, 2006.01]
	0 N- N- 11 N-C-N(N-C-O- or N-C-Hal the	275/60	• • Y being an oxygen atom, e.g. allophanic
	nitrogen atoms not being part of nitro or nitroso	275 /62	acids [5, 2006.01]
	groups [5, 2006.01]	275/62	• • Y being a nitrogen atom, e.g. biuret [5, 2006.01]
275/02	• Salts; Complexes; Addition compounds [5, 2006.01]	275/64	 having nitrogen atoms of urea groups singly-bound to
275/04	 having nitrogen atoms of urea groups bound to acyclic carbon atoms [5, 2006.01] 		oxygen atoms [5, 2006.01]
275/06	• of an acyclic and saturated carbon	275/66	 having nitrogen atoms of urea groups bound to halogen atoms or to nitro or nitroso
275/08	skeleton [5, 2006.01] • • being further substituted by halogen atoms, or		groups [5, 2006.01]
2/3/00	by nitro or nitroso groups [5, 2006.01]	275/68	• • N-nitroso ureas [5, 2006.01]
275/10	 • being further substituted by singly-bound 	275/70	• Compounds containing any of the groups
275/12	oxygen atoms [5, 2006.01] • • being further substituted by doubly-bound		-N=C or -N=C
_, 5, 12	oxygen atoms [5, 2006.01]		-N=C or -N=C Hall e.g. isoureas [5, 2006.01]
275/14	 being further substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] 		c.g. 130meas [3, 2000.01]

277/00 Preparation of guanidine or its derivatives, i.e. 281/02 Compounds containing any of the groups compounds containing the group $^{>\!\!\! N_{\scriptscriptstyle \parallel}}$ singly-bound nitrogen atoms not being part of nitro carbazates [5, 2006.01] or nitroso groups [5, 2006.01] 281/04 the other nitrogen atom being further doubly-277/02 of guanidine from cyanamide, calcium cyanamide or bound to a carbon atom [5, 2006.01] dicyandiamides [5, 2006.01] 281/06 Compounds containing any of the groups 277/04 of guanidine from ammonium thiocyanate [5, 2006.01] 277/06 Purification or separation of guanidine [5, 2006.01] 277/08 of substituted guanidines [5, 2006.01] 279/00 Derivatives of guanidine, i.e. compounds containing semicarbazides [5, 2006.01] 281/08 the other nitrogen atom being further doublythe group ^{>N} -N< the singly-bound nitrogen atoms bound to a carbon atom, e.g. not being part of nitro or nitroso groups [5, 2006.01] semicarbazones [5, 2006.01] 279/02 Guanidine; Salts, complexes or addition compounds 281/10 the carbon atom being further bound to an thereof [5, 2006.01] acyclic carbon atom or to a carbon atom of a 279/04 · having nitrogen atoms of guanidine groups bound to ring other than a six-membered aromatic acyclic carbon atoms of a carbon ring [5, 2006.01] skeleton [5, 2006.01] the carbon atom being part of a ring other than 281/12 279/06 being further substituted by halogen atoms, or by a six-membered aromatic ring [5, 2006.01] nitro or nitroso groups [5, 2006.01] 281/14 the carbon atom being further bound to a 279/08 being further substituted by singly-bound oxygen carbon atom of a six-membered aromatic ring [5, 2006.01] atoms [5, 2006.01] • Compounds containing any of the groups being further substituted by doubly-bound oxygen 281/16 279/10 $\stackrel{\cdot}{N}$ - $\stackrel{\cdot}$ atoms [5, 2006.01] being further substituted by nitrogen atoms not 279/12 being part of nitro or nitroso groups [5, 2006.01] aminoguanidine [5, 2006.01] being further substituted by carboxyl 279/14 281/18 the other nitrogen atom being further doublygroups [5, 2006.01] bound to a carbon atom, e.g. • having nitrogen atoms of guanidine groups bound to guanylhydrazones [5, 2006.01] 279/16 carbon atoms of rings other than six-membered 281/20 the two nitrogen atoms of the functional groups being aromatic rings [5, 2006.01] doubly-bound to each other, e.g. azoformamide [5, 2006.01] 279/18 having nitrogen atoms of guanidine groups bound to carbon atoms of six-membered aromatic 291/00 rings [5, 2006.01] Compounds containing carbon and nitrogen and having functional groups not covered by groups 279/20 containing any of the groups C07C 201/00-C07C 281/00 [5, 2006.01] 291/02 containing nitrogen-oxide bonds [5, 2006.01] 291/04 containing amino-oxide bonds [5, 2006.01] 291/06 Nitrile oxides [5, 2006.01] 291/08 Azoxy compounds [5, 2006.01] X being a hetero atom, Y being any atom, e.g. 291/10 Isocyanides [5, 2006.01] acylguanidines [5, 2006.01] 291/12 Fulminates [5, 2006.01] 279/22 Y being a hydrogen or a carbon atom, e.g. 291/14 containing at least one carbon atom bound to a nitro benzoylguanidines [5, 2006.01] or nitroso group and doubly-bound to a hetero 279/24 Y being a hetero atom [5, 2006.01] atom [5, 2006.01] X and Y being nitrogen atoms, i.e. 279/26 biguanides [5, 2006.01] Compounds containing carbon together with sulfur, selenium or 279/28 · having nitrogen atoms of guanidine groups bound to tellurium, with or without hydrogen, halogens, oxygen or cyano groups, e.g. cyanoguanidines, nitrogen [5] dicyandiamides [5, 2006.01] 279/30 having nitrogen atoms of guanidine groups bound to 301/00 Esters of sulfurous acid [5, 2006.01] nitro or nitroso groups [5, 2006.01] 301/02 having sulfite groups bound to carbon atoms of six-279/32 N-nitroguanidines [5, 2006.01] membered aromatic rings [5, 2006.01] 279/34 N-nitroguanidine [5, 2006.01] Substituted N-nitroguanidines [5, 2006.01] 279/36 303/00 Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, 281/00 Derivatives of carbonic acid containing functional halides, anhydrides or amides [5, 2006.01] groups covered by groups C07C 269/00-C07C 279/00 303/02 of sulfonic acids or halides thereof [5, 2006.01]

IPC (2025.01), Section C 43

303/04

303/06

by substitution of hydrogen atoms by sulfo or

by reaction with sulfuric acid or sulfur

halosulfonyl groups [5, 2006.01]

trioxide [5, 2006.01]

in which at least one nitrogen atom of these

group [5, 2006.01]

functional groups is further bound to another

nitrogen atom not being part of a nitro or nitroso

303/08	• • • by reaction with halogenosulfonic acids [5, 2006.01]	307/00	Amides of sulfuric acids, i.e. compounds having singly-bound oxygen atoms of sulfate groups
303/10	• • • by reaction with sulfur dioxide and halogen or		replaced by nitrogen atoms, not being part of nitro or nitroso groups [5, 2006.01]
303/12	by reaction with sulfuryl halides [5, 2006.01] • • by reaction with thionylhalides [5, 2006.01]	307/02	 Monoamides of sulfuric acids or esters thereof, e.g.
303/14	by sulfoxidation, i.e. by reaction with sulfur		sulfamic acids [5, 2006.01]
	dioxide and oxygen with formation of sulfo or	307/04	• Diamides of sulfuric acids [5, 2006.01]
202/46	halosulfonyl groups [5, 2006.01]	307/06	• • having nitrogen atoms of the sulfamide groups
303/16	 by oxidation of thiols, sulfides, hydropolysulfides, or polysulfides with formation of sulfo or 	307/08	bound to acyclic carbon atoms [5, 2006.01]having nitrogen atoms of the sulfamide groups
	halosulfonyl groups [5, 2006.01]	307700	bound to carbon atoms of rings other than six-
303/18	 by reaction of sulfides with compounds having 		membered aromatic rings [5, 2006.01]
	functional groups with formation of sulfo or	307/10	having nitrogen atoms of the sulfamide groups
303/20	halosulfonyl groups [5, 2006.01]by addition of sulfurous acid or salts thereof to		bound to carbon atoms of six-membered aromatic rings [5, 2006.01]
5057 20	compounds having carbon-to-carbon multiple		-
	bonds [5, 2006.01]	309/00	Sulfonic acids; Halides, esters, or anhydrides thereof [5, 2006.01]
303/22	• • from sulfonic acids by reactions not involving the	309/01	• Sulfonic acids [5, 2006.01]
	formation of sulfo or halosulfonyl groups [5, 2006.01]	309/02	 having sulfo groups bound to acyclic carbon
303/24	• of esters of sulfuric acids [5, 2006.01]		atoms [5, 2006.01]
303/26	• of esters of sulfonic acids [5, 2006.01]	309/03	• • • of an acyclic saturated carbon
303/28	by reaction of hydroxy compounds with sulfonic	200/04	skeleton [5, 2006.01]
202/20	acids or derivatives thereof [5, 2006.01]	309/04 309/05	containing only one sulfo group [5, 2006.01]containing at least two sulfo groups bound to
303/30	 by reactions not involving the formation of esterified sulfo groups [5, 2006.01] 	3037 03	the carbon skeleton [5, 2006.01]
303/32	 of salts of sulfonic acids [5, 2006.01] 	309/06	• • • containing halogen atoms, or nitro or nitroso
303/34	• of amides of sulfuric acids [5, 2006.01]		groups bound to the carbon
303/36	• of amides of sulfonic acids [5, 2006.01]	309/07	skeleton [5, 2006.01] • • • containing oxygen atoms bound to the
303/38	by reaction of ammonia or amines with sulfonic saids, or with estars, apply drides, or halides.	505707	carbon skeleton [5, 2006.01]
	acids, or with esters, anhydrides, or halides thereof [5, 2006.01]	309/08	• • • • containing hydroxy groups bound to the
303/40	• • by reactions not involving the formation of	200 /00	carbon skeleton [5, 2006.01]
	sulfonamide groups [5, 2006.01]	309/09	• • • • containing etherified hydroxy groups bound to the carbon skeleton [5, 2006.01]
303/42	 Separation; Purification; Stabilisation; Use of additives [5, 2006.01] 	309/10	• • • • • with the oxygen atom of at least one of
303/44	• • Separation; Purification [5, 2006.01]		the etherified hydroxy groups further
303/46	• • • from by-products of refining mineral oils with		bound to an acyclic carbon atom [5, 2006.01]
	sulfuric acid [5, 2006.01]	309/11	• • • • • with the oxygen atom of at least one of
305/00	Esters of sulfuric acids [5, 2006.01]		the etherified hydroxy groups further
305/02	 having oxygen atoms of sulfate groups bound to 		bound to a carbon atom of a six-membered aromatic ring [5, 2006.01]
	acyclic carbon atoms of a carbon	309/12	• • • containing esterified hydroxy groups
305/04	skeleton [5, 2006.01]being acyclic and saturated [5, 2006.01]	303712	bound to the carbon skeleton [5, 2006.01]
305/04	 Hydrogenosulfates [5, 2006.01] 	309/13	• • • containing nitrogen atoms, not being part of
305/08	Dialkylsulfates; Substituted		nitro or nitroso groups, bound to the carbon skeleton [5, 2006.01]
	dialkylsulfates [5, 2006.01]	309/14	· · · · containing amino groups bound to the
305/10	• • • being further substituted by singly-bound		carbon skeleton [5, 2006.01]
305/12	oxygen atoms [5, 2006.01] • being saturated and containing rings [5, 2006.01]	309/15	• • • • the nitrogen atom of at least one of the
305/14	 being acyclic and unsaturated [5, 2006.01] 		amino groups being part of any of the
305/16	being unsaturated and containing		X >N-C-Y or -N=C
	rings [5, 2006.01]		·
305/18	 containing six-membered aromatic rings [5, 2006.01] 		groups 'X being a hetero atom, Y being any
305/20	having oxygen atoms of sulfate groups bound to		atom [5, 2006.01]
3037 20	carbon atoms of rings other than six-membered	309/16	• • • • containing doubly-bound nitrogen atoms
B.C :	aromatic rings [5, 2006.01]	309/17	bound to the carbon skeleton [5, 2006.01]
305/22	 having oxygen atoms of sulfate groups bound to carbon atoms of six-membered aromatic 	309/1/	• • • containing carboxyl groups bound to the carbon skeleton [5, 2006.01]
	rings [5, 2006.01]	309/18	• • • • containing amino groups bound to the
305/24	 of non-condensed six-membered aromatic 		same carbon skeleton [5, 2006.01]
005/00	rings [5, 2006.01]	309/19	 • of a saturated carbon skeleton containing rings [5, 2006.01]
305/26	 Halogenosulfates, i.e. monoesters of halogenosulfuric acids [5, 2006.01] 	309/20	• • of an acyclic unsaturated carbon
	actao [o, =vvoivx]	v 	skeleton [5, 2006.01]

309/21	nitro or nitroso groups, bound to the carbon	309/49 • • • the carbon skeleton being further substituted by singly-bound oxygen atoms [5, 2006.01]
309/22		309/50 • • • • having at least one of the sulfo groups bound to a carbon atom of a six-
	carbon skeleton [5, 2006.01]	membered aromatic ring being part of a
309/23	rings other than six-membered aromatic	condensed ring system [5, 2006.01] 309/51 • • • at least one of the nitrogen atoms being part
309/24	rings [5, 2006.01] of a carbon skeleton containing six-membered aromatic rings [5, 2006.01]	>N−C or −N=C
309/25	_	of any of the groups Y Y
303723	rings other than six-membered aromatic rings of a	X being a hetero atom, Y being any atom [5, 2006.01]
	carbon skeleton [5, 2006.01]	309/52 • • • the carbon skeleton being further substituted
309/26		by doubly-bound oxygen atoms [5, 2006.01]
	nitro or nitroso groups, bound to the carbon skeleton [5, 2006.01]	309/53 • • • • the carbon skeleton containing carbon atoms of quinone rings [5, 2006.01]
309/27	skeleton [5, 2006.01]	309/54 • • • • • at least one of the nitrogen atoms being part of any of the groups
309/28	0 0 1	
	membered aromatic rings of a carbon skeleton [5, 2006.01]	N-C or -N=C Y X being a
309/29		Y Y being a
303723	rings [5, 2006.01]	hetero atom, Y being any
309/30	_	atom [5, 2006.01]
	by alkyl groups [5, 2006.01]	309/55 • • • • • Y being a hydrogen or a carbon
309/31		atom [5, 2006.01] 309/56 • • • • • • • Y being a hetero atom [5, 2006.01]
	carbon atoms [5, 2006.01]	309/56 • • • • • • Y being a hetero atom [5, 2006.01] 309/57 • • containing carboxyl groups bound to the carbon
309/32		skeleton [5, 2006.01]
	membered aromatic rings in the carbon skeleton [5, 2006.01]	309/58 • • • • Carboxylic acid groups or esters
309/33		thereof [5, 2006.01]
	condensed ring systems [5, 2006.01]	309/59 • • • • Nitrogen analogues of carboxyl
309/34	• • • • formed by two rings [5, 2006.01]	groups [5, 2006.01]
309/35		309/60 • • • • the carbon skeleton being further substituted by singly-bound oxygen atoms [5, 2006.01]
309/36		309/61 • • • the carbon skeleton being further substituted
309/37	groups [5, 2006.01] '••••• by alkyl groups containing at least	by nitrogen atoms, not being part of nitro or
	three carbon atoms [5, 2006.01]	nitroso groups [5, 2006.01] 309/62 • Sulfonated fats, oils or waxes of undetermined
309/38	, , , ,	constitution [5, 2006.01]
309/39		309/63 • Esters of sulfonic acids [5, 2006.01]
309/40	skeleton [5, 2006.01] • • • containing nitro or nitroso groups bound to the	309/64 • having sulfur atoms of esterified sulfo groups
5057 40	carbon skeleton [5, 2006.01]	bound to acyclic carbon atoms [5, 2006.01]
309/41	• • containing singly-bound oxygen atoms bound	309/65 • • • of a saturated carbon skeleton [5, 2006.01]
	to the carbon skeleton [5, 2006.01]	309/66 • • • • Methanesulfonates [5, 2006.01] 309/67 • • • of an unsaturated carbon skeleton [5, 2006.01]
309/42	0 0 1	309/68 • • • of a carbon skeleton substituted by singly-
	atoms of non-condensed six-membered aromatic rings [5, 2006.01]	bound oxygen atoms [5, 2006.01]
309/43		309/69 • • • of a carbon skeleton substituted by nitrogen
	to a carbon atom of a six-membered	atoms, not being part of nitro or nitroso
	aromatic ring being part of a condensed ring	groups [5, 2006.01] 309/70 • • • of a carbon skeleton substituted by carboxyl
309/44	system [5, 2006.01]	309/70 • • • of a carbon skeleton substituted by carboxyl groups [5, 2006.01]
303/44	• • • containing doubly-bound oxygen atoms bound to the carbon skeleton [5, 2006.01]	309/71 • having sulfur atoms of esterified sulfo groups
309/45		bound to carbon atoms of rings other than six-
	nitro or nitroso groups, bound to the carbon	membered aromatic rings [5, 2006.01]
	skeleton [5, 2006.01]	309/72 • having sulfur atoms of esterified sulfo groups
309/46	 having the sulfo groups bound to carbon atoms of non-condensed six-membered 	bound to carbon atoms of six-membered aromatic rings of a carbon skeleton [5, 2006.01]
	aromatic rings [5, 2006.01]	309/73 • • • to carbon atoms of non-condensed six-
309/47	9 1	membered aromatic rings [5, 2006.01]
	to a carbon atom of a six-membered aromatic ring being part of a condensed ring	309/74 • • • to carbon atoms of six-membered aromatic rings being part of condensed ring
	system [5, 2006.01]	systems [5, 2006.01]
309/48		309/75 • • • containing singly-bound oxygen atoms bound
	by halogen atoms [5, 2006.01]	to the carbon skeleton [5, 2006.01]

46

309/76	• • containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon	311/13 • • • the carbon skeleton containing six-membered
	skeleton [5, 2006.01]	aromatic rings [5, 2006.01] 311/14 • Sulfonamides having sulfur atoms of sulfonamide
309/77	• • containing carboxyl groups bound to the carbon skeleton [5, 2006.01]	groups bound to carbon atoms of rings other than six- membered aromatic rings [5, 2006.01]
309/78	 Halides of sulfonic acids [5, 2006.01] 	311/15 • Sulfonamides having sulfur atoms of sulfonamide
309/79	 having halosulfonyl groups bound to acyclic carbon atoms [5, 2006.01] 	groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01]
309/80	• • • of a saturated carbon skeleton [5, 2006.01]	• • having the nitrogen atom of at least one of the
309/81	• • • of an unsaturated carbon skeleton [5, 2006.01]	sulfonamide groups bound to hydrogen atoms or to an acyclic carbon atom [5, 2006.01]
309/82	• • • of a carbon skeleton substituted by singly-bound oxygen atoms [5, 2006.01]	311/17 • • • to an acyclic carbon atom of a hydrocarbon radical substituted by singly-bound oxygen
309/83	of a carbon skeleton substituted by nitrogen atoms, not being part of nitro or nitroso	atoms [5, 2006.01]
200/04	groups [5, 2006.01]	311/18 • • • to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms, not being
309/84	• • • of a carbon skeleton substituted by carboxyl groups [5, 2006.01]	part of nitro or nitroso groups [5, 2006.01] 311/19 • • • to an acyclic carbon atom of a hydrocarbon
309/85	 having halosulfonyl groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01] 	radical substituted by carboxyl groups [5, 2006.01]
309/86	 having halosulfonyl groups bound to carbon atoms 	• • having the nitrogen atom of at least one of the
	of six-membered aromatic rings of a carbon skeleton [5, 2006.01]	sulfonamide groups bound to a carbon atom of a ring other than a six-membered aromatic
309/87	• • • containing singly-bound oxygen atoms bound	ring [5, 2006.01] 311/21 • having the nitrogen atom of at least one of the
309/88	to the carbon skeleton [5, 2006.01] • • containing nitrogen atoms, not being part of	sulfonamide groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01]
	nitro or nitroso groups, bound to the carbon skeleton [5, 2006.01]	311/22 • Sulfonamides, the carbon skeleton of the acid part
309/89	• containing carboxyl groups bound to the carbon	being further substituted by singly-bound oxygen atoms [5, 2006.01]
	skeleton [5, 2006.01]	311/23 • having the sulfur atoms of the sulfonamide groups
311/00	Amides of sulfonic acids, i.e. compounds having	bound to acyclic carbon atoms [5, 2006.01]
	singly-bound oxygen atoms of sulfo groups replaced	311/24 • • • of an acyclic saturated carbon
	by nitrogen atoms, not being part of nitro or nitroso	skeleton [5, 2006.01] 311/25 • • of a saturated carbon skeleton containing
311/01	groups [5, 2006.01]Sulfonamides having sulfur atoms of sulfonamide	rings [5, 2006.01]
311/02	groups bound to acyclic carbon atoms [5, 2006.01] • of an acyclic saturated carbon	311/26 • • • of an acyclic unsaturated carbon skeleton [5, 2006.01]
	skeleton [5, 2006.01]	311/27 • • • of an unsaturated carbon skeleton containing rings [5, 2006.01]
311/03	 having the nitrogen atoms of the sulfonamide groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] 	311/28 • having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a
311/04	• • • to acyclic carbon atoms of hydrocarbon	ring other than a six-membered aromatic
0.2.2, 0.7	radicals substituted by singly-bound oxygen	ring [5, 2006.01]
	atoms [5, 2006.01]	311/29 • having the sulfur atom of at least one of the
311/05	 to acyclic carbon atoms of hydrocarbon radicals substituted by nitrogen atoms, not 	sulfonamide groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01]
	being part of nitro or nitroso groups [5, 2006.01]	• Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen
311/06	• • • to acyclic carbon atoms of hydrocarbon	atoms, not being part of nitro or nitroso
	radicals substituted by carboxyl	groups [5, 2006.01]
311/07	groups [5, 2006.01] • • having the nitrogen atom of at least one of the	• • having the sulfur atoms of the sulfonamide groups bound to acyclic carbon atoms [5, 2006.01]
	sulfonamide groups bound to a carbon atom of a ring other than a six-membered aromatic	311/32 • • • of an acyclic saturated carbon skeleton [5, 2006.01]
211 /00	ring [5, 2006.01]	311/33 • • • of a saturated carbon skeleton containing
311/08	• • having the nitrogen atom of at least one of the sulfonamide groups bound to a carbon atom of	rings [5, 2006.01] 311/34 • • • of an acyclic unsaturated carbon
311/09	a six-membered aromatic ring [5, 2006.01]the carbon skeleton being further substituted by	skeleton [5, 2006.01]
	at least two halogen atoms [5, 2006.01]	311/35 • • • of an unsaturated carbon skeleton containing rings [5, 2006.01]
311/10	 of a saturated carbon skeleton containing rings [5, 2006.01] 	• • having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a
311/11	• • of an acyclic unsaturated carbon skeleton [5, 2006.01]	ring other than a six-membered aromatic ring [5, 2006.01]
311/12	of an unsaturated carbon skeleton containing	311/37 • having the sulfur atom of at least one of the
, 	rings [5, 2006.01]	sulfonamide groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01]

311/38	 having sulfur atoms of sulfonamide groups and amino groups bound to carbon atoms of six- 	311/60	• • • • having nitrogen atoms of the sulfonylurea groups bound to carbon atoms of six-
	membered aromatic rings of the same carbon skeleton [5, 2006.01]	211/61	membered aromatic rings [5, 2006.01]
311/39	• • • having the nitrogen atom of at least one of the sulfonamide groups bound to hydrogen	311/61	• • • • having nitrogen atoms of the sulfonylurea groups further bound to another hetero atom [5, 2006.01]
	atoms or to an acyclic carbon atom [5, 2006.01]	311/62	• • • • having nitrogen atoms of the sulfonylurea
311/40	• • • • to an acyclic carbon atom of a	311/63	groups further acylated [5, 2006.01] • • • • N-sulfonylisoureas [5, 2006.01]
0-1-, 10	hydrocarbon radical substituted by singly-	311/64	• • • X and Y being nitrogen atoms, e.g. N-
	bound oxygen atoms [5, 2006.01]		sulfonylguanidine [5, 2006.01]
311/41	• • • • to an acyclic carbon atom of a hydrocarbon radical substituted by	311/65	• N-sulfonylisocyanates [5, 2006.01]
	nitrogen atoms, not being part of nitro or	313/00	Sulfinic acids; Sulfenic acids; Halides, esters or
211/42	nitroso groups [5, 2006.01]		anhydrides thereof; Amides of sulfinic or sulfenic
311/42	• • • • to an acyclic carbon atom of a hydrocarbon radical substituted by		acids, i.e. compounds having singly-bound oxygen atoms of sulfinic or sulfenic groups replaced by
	carboxyl groups [5, 2006.01]		nitrogen atoms, not being part of nitro or nitroso
311/43	• • • having the nitrogen atom of at least one of		groups [5, 2006.01]
	the sulfonamide groups bound to a carbon	313/02	• Sulfinic acids; Derivatives thereof [5, 2006.01]
	atom of a ring other than a six-membered	313/04	• • Sulfinic acids; Esters thereof [5, 2006.01]
211/44	aromatic ring [5, 2006.01]	313/06	• • Sulfinamides [5, 2006.01]
311/44	• • • having the nitrogen atom of at least one of the sulfonamide groups bound to a carbon	313/08	• Sulfenic acids; Derivatives thereof [5, 2006.01]
	atom of a six-membered aromatic	313/10	• • Sulfenic acids; Esters thereof [5, 2006.01]
311/45	ring [5, 2006.01] • • at least one of the singly-bound nitrogen atoms	313/12	 having sulfur atoms of sulfenic groups bound to acyclic carbon atoms [5, 2006.01]
311/43	being part of any of the groups	313/14	 having sulfur atoms of sulfenic groups bound to carbon atoms of rings other than six-membered
	X		aromatic rings [5, 2006.01]
	>N−C′ or −N=C′	313/16	 having sulfur atoms of sulfenic groups bound to
	Y Y X being a hetero atom, Y		carbon atoms of six-membered aromatic
	being any atom, e.g. N-		rings [5, 2006.01]
311/46	acylaminosulfonamides [5, 2006.01]Y being a hydrogen or a carbon	313/18	• • Sulfenamides [5, 2006.01]
311/40	atom [5, 2006.01]	313/20	 having sulfur atoms of sulfenamide groups bound to acyclic carbon atoms [5, 2006.01]
311/47	• • • Y being a hetero atom [5, 2006.01]	313/22	• • • having sulfur atoms of sulfenamide groups
311/48	 having nitrogen atoms of sulfonamide groups further bound to another hetero atom [5, 2006.01] 	313/22	bound to carbon atoms of rings other than six- membered aromatic rings [5, 2006.01]
311/49	• • to nitrogen atoms [5, 2006.01]	313/24	• • having sulfur atoms of sulfenamide groups
311/50	 Compounds containing any of the groups 		bound to carbon atoms of six-membered
	X X		aromatic rings [5, 2006.01]
	$C-SO_2-N-C$ or $C-SO_2-N=C$	313/26	• • Compounds containing any of the groups
	Y X being a		X ≩C-S-N-C-Y or ≩C-S-N=C-Y X being a
D44 /E4	hetero atom, Y being any atom [5, 2006.01]		hetero atom, Y being any atom [5, 2006.01]
311/51	• • Y being a hydrogen or a carbon atom [5, 2006.01]	313/28	• • • • Y being a hydrogen or a carbon
311/52	• • Y being a hetero atom [5, 2006.01]	313/20	atom [5, 2006.01]
311/53	 X and Y not being nitrogen atoms, e.g. N- sulfonylcarbamic acid [5, 2006.01] 	313/30	• • • Y being a hetero atom [5, 2006.01]
311/54	• • either X or Y, but not both, being nitrogen	313/32	• • • • • X and Y not being nitrogen atoms, e.g. N-sulfenylcarbamic acid [5, 2006.01]
011/FF	atoms, e.g. N-sulfonylurea [5, 2006.01] • • • having sulfur atoms of the sulfonylurea	313/34	• • • • either X or Y, but not both, being nitrogen
311/55	groups bound to acyclic carbon		atoms, e.g. N-sulfenylureas [5, 2006.01]
	atoms [5, 2006.01]	313/36	 having nitrogen atoms of sulfenamide groups further bound to other hetero
311/56	• • • having sulfur atoms of the sulfonylurea		atoms [5, 2006.01]
	groups bound to carbon atoms of rings other than six-membered aromatic	313/38	• • • N-sulfenylisocyanates [5, 2006.01]
	rings [5, 2006.01]	313, 33	1. Saireny 1150ey anates [5, 2000.02]
311/57	• • • having sulfur atoms of the sulfonylurea groups bound to carbon atoms of six-	315/00	Preparation of sulfones; Preparation of sulfoxides [5, 2006.01]
	membered aromatic rings [5, 2006.01]	315/02	 by formation of sulfone or sulfoxide groups by
311/58	• • • having nitrogen atoms of the sulfonylurea		oxidation of sulfides, or by formation of sulfone
	groups bound to hydrogen atoms or to	D.1 = · -	groups by oxidation of sulfoxides [5, 2006.01]
	acyclic carbon atoms [5, 2006.01]	315/04	• by reactions not involving the formation of sulfone or
311/59	• • • • having nitrogen atoms of the sulfonylurea	215 /00	sulfoxide groups [5, 2006.01]
	groups bound to carbon atoms of rings other than six-membered aromatic	315/06	 Separation; Purification; Stabilisation; Use of additives [5, 2006.01]
	other than six-membered aromatic rings [5, 2006.01]		additives [5, 2000.01]
	50 [0, 2 000,01]		

317/00	Sulfones; Sulfoxides [5, 2006.01]	317/50	• • • at least one of the nitrogen atoms being part of
317/02	 having sulfone or sulfoxide groups bound to acyclic carbon atoms [5, 2006.01] 		X X X X X X X Y Or -N=C
317/04	 of an acyclic saturated carbon skeleton [5, 2006.01] 		any of the groups Y X being a hetero atom, Y being any
317/06	 of a saturated carbon skeleton containing rings [5, 2006.01] 		atom [5, 2006.01]
317/08	of an acyclic unsaturated carbon skeleton [5, 2006.01]	319/00	Preparation of thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01]
317/10	of an unsaturated carbon skeleton containing rings [5, 2006.01]	319/02 319/04	 of thiols [5, 2006.01] by addition of hydrogen sulfide or its salts to
317/12	having sulfone or sulfoxide groups bound to carbon atoms of rings other than six-membered aromatic	319/06	unsaturated compounds [5, 2006.01] • from sulfides, hydropolysulfides or
317/14	rings [5, 2006.01] • having sulfone or sulfoxide groups bound to carbon	319/08	polysulfides [5, 2006.01] • by replacement of hydroxy groups or etherified or
	atoms of six-membered aromatic rings [5, 2006.01]		esterified hydroxy groups [5, 2006.01]
317/16	 having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon skeleton [5, 2006.01] 	319/10	 • by replacement of hydroxy groups or etherified or esterified hydroxy groups bound to carbon atoms of six-membered aromatic
317/18	 with sulfone or sulfoxide groups bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01] 	319/12	rings [5, 2006.01] • by reactions not involving the formation of
317/20	 with sulfone or sulfoxide groups bound to carbon atoms of rings other than six-membered aromatic 	319/14	mercapto groups [5, 2006.01] • of sulfides [5, 2006.01]
	rings of the carbon skeleton [5, 2006.01]	319/16	 by addition of hydrogen sulfide or its salts to
317/22	 with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the 	319/18	unsaturated compounds [5, 2006.01]by addition of thiols to unsaturated
317/24	carbon skeleton [5, 2006.01]having sulfone or sulfoxide groups and doubly-bound	319/20	compounds [5, 2006.01] • • by reactions not involving the formation of sulfide
517721	oxygen atoms bound to the same carbon		groups [5, 2006.01]
217/20	skeleton [5, 2006.01]	319/22	 of hydropolysulfides or polysulfides [5, 2006.01]
317/26	 having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, 	319/24	 by reactions involving the formation of sulfur-to- sulfur bonds [5, 2006.01]
317/28	bound to the same carbon skeleton [5, 2006.01]with sulfone or sulfoxide groups bound to acyclic	319/26	• Separation; Purification; Stabilisation; Use of
31//20	carbon atoms of the carbon skeleton [5, 2006.01]	040/00	additives [5, 2006.01]
317/30	 with sulfone or sulfoxide groups bound to carbon 	319/28	• • Separation; Purification [5, 2006.01]
021,00	atoms of rings other than six-membered aromatic rings of the carbon skeleton [5, 2006.01]	319/30	• • • from the by-products of refining mineral oils [5, 2006.01]
317/32	 with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the 	321/00	Thiols, sulfides, hydropolysulfides or
	carbon skeleton [5, 2006.01]	221/02	polysulfides [5, 2006.01]
317/34	 having sulfone or sulfoxide groups and amino 	321/02	 Thiols having mercapto groups bound to acyclic carbon atoms [5, 2006.01]
	groups bound to carbon atoms of six-membered aromatic rings being part of the same non-	321/04	 of an acyclic saturated carbon skeleton [5, 2006.01]
245/26	condensed ring or of a condensed ring system containing that ring [5, 2006.01]	321/06	 of a saturated carbon skeleton containing rings [5, 2006.01]
317/36	• • • with the nitrogen atoms of the amino groups bound to hydrogen atoms or to carbon	321/08	• • of an acyclic unsaturated carbon skeleton [5, 2006.01]
317/38	atoms [5, 2006.01]with the nitrogen atom of at least one amino group being part of any of the groups	321/10	 of an unsaturated carbon skeleton containing rings [5, 2006.01]
	× × × × × × × × × × × × × × × × × × ×	321/12	 Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms [5, 2006.01]
	Y X being a hetero	321/14	 of an acyclic saturated carbon
	atom, Y being any atom, e.g. Nacylaminosulfones [5, 2006.01]	321/16	skeleton [5, 2006.01]of a saturated carbon skeleton containing
317/40	• • • • Y being a hydrogen or a carbon atom [5, 2006.01]	321/18	rings [5, 2006.01] of an acyclic unsaturated carbon
317/42	• • • • Y being a hetero atom [5, 2006.01]		skeleton [5, 2006.01]
317/44	 having sulfone or sulfoxide groups and carboxyl groups bound to the same carbon 	321/20	 of an unsaturated carbon skeleton containing rings [5, 2006.01]
	skeleton [5, 2006.01]	321/22	• Thiols, sulfides, hydropolysulfides, or polysulfides
317/46	 the carbon skeleton being further substituted by singly-bound oxygen atoms [5, 2006.01] 		having thio groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]
317/48	 the carbon skeleton being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups [5, 2006.01] 	321/24	 Thiols, sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six- membered aromatic rings [5, 2006.01]

321/26	• • Thiols [5, 2006.01]		ulfur atom of the thio group bound to
321/28	 Sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six- membered aromatic rings [5, 2006.01] 	being part	atom of a six-membered aromatic ring to f a condensed ring , 2006.01]
321/30	• Sulfides having the sulfur atom of at least one		groups and doubly-bound oxygen
321730	thio group bound to two carbon atoms of six- membered aromatic rings [5, 2006.01]		the same carbon
222/00			groups and nitrogen atoms, not being
323/00	Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or		nitroso groups, bound to the same
	by sulfur atoms not being part of thio	carbon skeleton	
	groups [5, 2006.01]		ulfur atoms of the thio groups bound rbon atoms of the carbon
323/01	 containing thio groups and halogen atoms, or nitro or 	skeleton [5, 2	
	nitroso groups bound to the same carbon		n skeleton being acyclic and
	skeleton [5, 2006.01]		[5, 2006.01]
323/02	 having sulfur atoms of thio groups bound to 	323/26 • • • the carbon	n skeleton being saturated and
	acyclic carbon atoms of the carbon		g rings [5, 2006.01]
323/03	skeleton [5, 2006.01] • • • the carbon skeleton being acyclic and		n skeleton being acyclic and
323/03	saturated [5, 2006.01]		ed [5, 2006.01]
323/04	the carbon skeleton being saturated and		n skeleton being unsaturated and g rings other than six-membered
	containing rings [5, 2006.01]		rings [5, 2006.01]
323/05	 the carbon skeleton being acyclic and 		n skeleton containing six-membered
	unsaturated [5, 2006.01]		rings [5, 2006.01]
323/06	• • • the carbon skeleton being unsaturated and		ılfur atom of at least one of the thio
	containing rings other than six-membered aromatic rings [5, 2006.01]		d to a carbon atom of a ring other than
323/07	the carbon skeleton containing six-membered	a six-membe skeleton [5, 7	red aromatic ring of the carbon
020,0,	aromatic rings [5, 2006.01]		alfur atom of at least one of the thio
323/08	 having sulfur atoms of thio groups bound to 		d to a carbon atom of a six-membered
	carbon atoms of rings other than six-membered	aromatic ring	g of the carbon skeleton [5, 2006.01]
222/00	aromatic rings of the carbon skeleton [5, 2006.01]		least one of the nitrogen atoms bound
323/09	 having sulfur atoms of thio groups bound to carbon atoms of six-membered aromatic rings of 		clic carbon atom of the carbon 5, 2006.01]
	the carbon skeleton [5, 2006.01]		least one of the nitrogen atoms bound
323/10	containing thio groups and singly-bound oxygen	<u> </u>	n atom of the same non-condensed
	atoms bound to the same carbon		ered aromatic ring [5, 2006.01]
000/44	skeleton [5, 2006.01]		group being a mercapto
323/11	 having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon 		[5, 2006.01]
	skeleton [5, 2006.01]		o group being a sulfide [5, 2006.01]
323/12	• • • the carbon skeleton being acyclic and		sulfur atom of the sulfide group being
	saturated [5, 2006.01]		her bound to an acyclic carbon
323/13	• • • the carbon skeleton being saturated and		n [5, 2006.01]
222/14	containing rings [5, 2006.01]		sulfur atom of the sulfide group being
323/14	 the carbon skeleton being acyclic and unsaturated [5, 2006.01] 		her bound to a carbon atom of a six- nbered aromatic ring [5, 2006.01]
323/15	the carbon skeleton being unsaturated and		ulfur atom of the thio group bound to
	containing rings other than six-membered		atom of a six-membered aromatic ring
	aromatic rings [5, 2006.01]	0.1	t of a condensed ring
323/16	• • • the carbon skeleton containing six-membered		, 2006.01]
222/17	aromatic rings [5, 2006.01]having the sulfur atom of at least one of the thio	323/39 • at least one of	of the nitrogen atoms being part of any
323/17	groups bound to a carbon atom of a ring other than		X X N-C-Y or -N=C
	a six-membered aromatic ring of the carbon		
	skeleton [5, 2006.01]	of the groups	
323/18	having the sulfur atom of at least one of the thio		Y being any atom [5, 2006.01] hydrogen or a carbon
	groups bound to a carbon atom of a six-membered	atom [5, 2	•
323/19	aromatic ring of the carbon skeleton [5, 2006.01]with singly-bound oxygen atoms bound to		g a hydrogen or an acyclic carbon
J2J/1J	acyclic carbon atoms of the carbon		5, 2006.01]
	skeleton [5, 2006.01]		g a carbon atom of a six-membered
323/20	• • with singly-bound oxygen atoms bound to		ic ring [5, 2006.01]
	carbon atoms of the same non-condensed six-	_	hetero atom [5, 2006.01]
	membered aromatic ring [5, 2006.01]		being nitrogen atoms [5, 2006.01]
			st one of the nitrogen atoms doubly- carbon skeleton [5, 2006.01]
		sound to the	[-,]

323/46	 having at least one of the nitrogen atoms, not being part of nitro or nitroso groups, further bound 	327/10 • • • to carbon atoms of an acyclic unsaturated carbon skeleton [5, 2006.01]
222/47	to other hetero atoms [5, 2006.01]	327/12 • • • to carbon atoms of an unsaturated carbon
323/47	• • to oxygen atoms [5, 2006.01]	skeleton containing rings [5, 2006.01]
323/48	• • to nitrogen atoms [5, 2006.01]	• • having carbon atoms of thiocarboxyl groups bound to carbon atoms of rings other than six-
323/49 323/50	 to sulfur atoms [5, 2006.01] containing thio groups and carboxyl groups bound to 	membered aromatic rings [5, 2006.01] 327/16 • having carbon atoms of thiocarboxyl groups
323/51	 the same carbon skeleton [5, 2006.01] having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon 	bound to carbon atoms of six-membered aromatic rings [5, 2006.01]
	skeleton [5, 2006.01]	327/18 • Dithiocarboxylic acids [5, 2006.01]
323/52	• • • the carbon skeleton being acyclic and saturated [5, 2006.01]	 327/20 • Esters of monothiocarboxylic acids [5, 2006.01] 327/22 • having carbon atoms of esterified thiocarboxyl
323/53	• • the carbon skeleton being saturated and containing rings [5, 2006.01]	groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01]
323/54	the carbon skeleton being acyclic and unsaturated [5, 2006.01]	 327/24 • having carbon atoms of esterified thiocarboxyl groups bound to carbon atoms of rings other than
323/55	• the carbon skeleton being unsaturated and	six-membered aromatic rings [5, 2006.01]
323733	containing rings other than six-membered aromatic rings [5, 2006.01]	• • having carbon atoms of esterified thiocarboxyl groups bound to carbon atoms of six-membered
323/56	• • • the carbon skeleton containing six-membered	aromatic rings [5, 2006.01]
	aromatic rings [5, 2006.01]	327/28 • having sulfur atoms of esterified thiocarboxyl
323/57	 the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups [5, 2006.01] 	groups bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01]
323/58	• • • with amino groups bound to the carbon	327/30 • having sulfur atoms of esterified thiocarboxyl groups bound to carbon atoms of hydrocarbon
323/59	skeleton [5, 2006.01] • • • with acylated amino groups bound to the	radicals substituted by nitrogen atoms, not being part of nitro or nitroso groups [5, 2006.01]
222/60	carbon skeleton [5, 2006.01]	327/32 • having sulfur atoms of esterified thiocarboxyl
323/60	 • with the carbon atom of at least one of the carboxyl groups bound to nitrogen atoms [5, 2006.01] 	groups bound to carbon atoms of hydrocarbon radicals substituted by carboxyl
323/61	 having the sulfur atom of at least one of the thio 	groups [5, 2006.01]
323701	groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon	327/34 • • • with amino groups bound to the same hydrocarbon radicals [5, 2006.01]
	skeleton [5, 2006.01]	327/36 • Esters of dithiocarboxylic acids [5, 2006.01]
323/62	 having the sulfur atom of at least one of the thio 	327/38 • Amides of thiocarboxylic acids [5, 2006.01]
222/62	groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton [5, 2006.01]	 having carbon atoms of thiocarboxamide groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01]
323/63	 the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups [5, 2006.01] 	327/42 • • • to hydrogen atoms or to carbon atoms of a saturated carbon skeleton [5, 2006.01]
323/64	containing thio groups and sulfur atoms, not being part of thio groups, bound to the same carbon	327/44 • • • to carbon atoms of an unsaturated carbon skeleton [5, 2006.01]
	skeleton [5, 2006.01]	327/46 • having carbon atoms of thiocarboxamide groups
323/65	 containing sulfur atoms of sulfone or sulfoxide groups bound to the carbon skeleton [5, 2006.01] 	bound to carbon atoms of rings other than six- membered aromatic rings [5, 2006.01]
323/66	• containing sulfur atoms of sulfo, esterified sulfo or	327/48 • having carbon atoms of thiocarboxamide groups
	halosulfonyl groups, bound to the carbon skeleton [5, 2006.01]	bound to carbon atoms of six-membered aromatic rings [5, 2006.01]
323/67	• containing sulfur atoms of sulfonamide groups,	327/50 • Compounds containing any of the groups
323/0/	bound to the carbon skeleton [5, 2006.01]	SI X S X -C-N-C-Y or -C-N-C
325/00	Thioaldehydes; Thioketones; Thioquinones; Oxides thereof [5, 2006.01]	X being a hetero atom, Y being any atom [5, 2006.01]
325/02	• Thioketones; Oxides thereof [5, 2006.01]	327/52 • • • Y being a hydrogen or a carbon
325/04	• Thioquinones; Oxides thereof [5, 2006.01]	atom [5, 2006.01]
327/00	Thiocarboxylic acids [5, 2006.01]	327/54 • • • Y being a hetero atom [5, 2006.01]
327/02	• Monothiocarboxylic acids [5, 2006.01]	• • having nitrogen atoms of thiocarboxamide groups further bound to another hetero atom [5, 2006.01]
327/04	 having carbon atoms of thiocarboxyl groups bound to hydrogen atoms or to acyclic carbon 	• Derivatives of thiocarboxylic acids, the doubly-
	atoms [5, 2006.01]	bound oxygen atoms being replaced by nitrogen atoms, e.g. imino-thio ethers [5, 2006.01]
327/06	• • to hydrogen atoms or to carbon atoms of an acyclic saturated carbon skeleton [5, 2006.01]	327/60 • Thiocarboxylic acids having sulfur atoms of
327/08	• • • to carbon atoms of a saturated carbon skeleton containing rings [5, 2006.01]	thiocarboxyl groups further doubly-bound to oxygen atoms [5, 2006.01]

329/00	Thiocarbonic acids; Halides, esters or anhydrides thereof [5, 2006.01]	333/00	Derivatives of thiocarbamic acids, i.e. compounds containing any of the groups
329/02	 Monothiocarbonic acids; Derivatives thereof [5, 2006.01] 		\$
329/04	• Esters of monothiocarbonic acids [5, 2006.01]		
329/06	 having sulfur atoms of thiocarbonic groups bound to acyclic carbon atoms [5, 2006.01] 		S S- D- >N-C-Hal, >N=C-S-, >N=C-S-
329/08	 having sulfur atoms of thiocarbonic groups 		S-
	bound to carbon atoms of rings other than six-		Ş- or >N=C-Hal the nitrogen storm
329/10	membered aromatic rings [5, 2006.01] • • having sulfur atoms of thiocarbonic groups		not being part of nitro or nitroso groups [5, 2006.01]
323/10	bound to carbon atoms of six-membered	333/02	 Monothiocarbamic acids; Derivatives
	aromatic rings [5, 2006.01]	3337 02	thereof [5, 2006.01]
329/12	 Dithiocarbonic acids; Derivatives thereof [5, 2006.01] 	333/04	 having nitrogen atoms of thiocarbamic groups bound to hydrogen atoms or to acyclic carbon
329/14	• Esters of dithiocarbonic acids [5, 2006.01]		atoms [5, 2006.01]
329/16	 having sulfur atoms of dithiocarbonic groups bound to acyclic carbon atoms [5, 2006.01] 	333/06	having nitrogen atoms of thiocarbamic groups bound to carbon atoms of rings other than six-
329/18	• • having sulfur atoms of dithiocarbonic groups	222 (00	membered aromatic rings [5, 2006.01]
200/00	bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]	333/08	having nitrogen atoms of thiocarbamic groups bound to carbon atoms of six-membered aromatic gings [5, 2006 01].
329/20	having sulfur atoms of dithiocarbonic groups bound to carbon atoms of six-membered	333/10	rings [5, 2006.01] • having nitrogen atoms of thiocarbamic groups
	aromatic rings [5, 2006.01]	3337 10	being part of any of the groups
331/00	Derivatives of thiocyanic acid or of isothiocyanic acid [5, 2006.01]		-s-C-N-C
331/02	• Thiocyanates [5, 2006.01]		
331/04	 having sulfur atoms of thiocyanate groups bound to acyclic carbon atoms [5, 2006.01] 		Hal-C-N-C -S-C-N=C
331/06	having sulfur atoms of thiocyanate groups bound		1
	to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]		\$
331/08	having sulfur atoms of thiocyanate groups bound		Y X being a hetero
	to carbon atoms of six-membered aromatic rings [5, 2006.01]		atom, Y being any atom, e.g., N-acylthiocarbamates [5, 2006.01]
331/10	 having sulfur atoms of thiocyanate groups bound to carbon atoms of hydrocarbon radicals 	333/12	 having nitrogen atoms of thiocarbamic groups
	substituted by singly-bound oxygen		bound to other hetero atoms [5, 2006.01]
	atoms [5, 2006.01]	333/14	• Dithiocarbamic acids; Derivatives
331/12	 having sulfur atoms of thiocyanate groups bound 	222/16	thereof [5, 2006.01]
	to carbon atoms of hydrocarbon radicals	333/16 333/18	 Salts of dithiocarbamic acids [5, 2006.01] Esters of dithiocarbamic acids [5, 2006.01]
	substituted by nitrogen atoms, not being part of nitro or nitroso groups [5, 2006.01]	333/10	• • having nitrogen atoms of dithiocarbamate
331/14	 having sulfur atoms of thiocyanate groups bound 	333720	groups bound to hydrogen atoms or to acyclic
551/14	to carbon atoms of hydrocarbon radicals		carbon atoms [5, 2006.01]
	substituted by carboxyl groups [5, 2006.01]	333/22	 having nitrogen atoms of dithiocarbamate
331/16	• Isothiocyanates [5, 2006.01]		groups bound to carbon atoms of rings other
331/18	having isothiocyanate groups bound to acyclic	333/24	than six-membered aromatic rings [5, 2006.01] • • having nitrogen atoms of dithiocarbamate
221/20	carbon atoms [5, 2006.01]	333724	groups bound to carbon atoms of six-membered
331/20 331/22	• of a saturated carbon skeleton [5, 2006.01]• of an unsaturated carbon skeleton [5, 2006.01]		aromatic rings [5, 2006.01]
331/24	• • • the carbon skeleton containing six-	333/26	 containing any of the groups
551721	membered aromatic rings [5, 2006.01]		S
331/26	 having isothiocyanate groups bound to carbon 		-S-C-N-C or -S-C-N=C
	atoms of rings other than six-membered aromatic		' X being a
221/20	rings [5, 2006.01]		hetero atom, Y being any atom, e.g. N-acyldithiocarbamates [5, 2006.01]
331/28	 having isothiocyanate groups bound to carbon atoms of six-membered aromatic 	333/28	 having nitrogen atoms of dithiocarbamate
	rings [5, 2006.01]	333720	groups bound to other hetero
331/30	 containing at least two isothiocyanate groups 		atoms [5, 2006.01]
05.1.11	bound to the same carbon skeleton [5, 2006.01]	333/30	having sulfur atoms of dithiocarbamic groups
331/32	• having isothiocyanate groups	ງງງ /ງງ	bound to other sulfur atoms [5, 2006.01]
	acylated [5, 2006.01]	333/32	• • • Thiuramsulfides; Thiurampolysulfides [5, 2006.01]
			imatamporysumaes to, 2000.01

335/00	Thioureas, i.e. compounds containing any of the	337/02	Compounds containing any of the groups
	S S- SN-C-NC or -N=C-NC the nitrogen atoms not		\$ \$- >N-N-C-S-, >N-N=C-S-
225 (22	being part of nitro or nitroso groups [5, 2006.01]		S 0 >N-N-C-0-, >N-N-C-S-
335/02 335/04	 Thiourea [5, 2006.01] Derivatives of thiourea [5, 2006.01]		
335/04	having nitrogen atoms of thiourea groups bound to		\$- or >N-N=C-O-
5557 00	acyclic carbon atoms [5, 2006.01]		or >N-N=C-O- e.g.
335/08	• • of a saturated carbon skeleton [5, 2006.01]		thiocarbazates [5, 2006.01]
335/10	• • • of an unsaturated carbon skeleton [5, 2006.01]	337/04	• • the other nitrogen atom being further doubly-
335/12	• • • the carbon skeleton containing six- membered aromatic rings [5, 2006.01]	337/06	bound to a carbon atom [5, 2006.01]Compounds containing any of the groups
335/14	having nitrogen atoms of thiourea groups bound to	337700	S S-
	carbon atoms of rings other than six-membered		>N-N-Ë-N<
225 /16	aromatic rings [5, 2006.01]		, Ş-
335/16	 having nitrogen atoms of thiourea groups bound to carbon atoms of six-membered aromatic rings of a 		or >N−Ň−Ċ=N <e.g.< th=""></e.g.<>
	carbon skeleton [5, 2006.01]		thiosemicarbazides [5, 2006.01]
335/18	• • being further substituted by singly-bound	337/08	the other nitrogen atom being further doubly-
335/20	oxygen atoms [5, 2006.01] • • being further substituted by nitrogen atoms, not		bound to a carbon atom, e.g. thiosemicarbazones [5, 2006.01]
333/20	being further substituted by nitrogen atoms, not being part of nitro or nitroso	337/10	 the two nitrogen atoms of the functional group being
	groups [5, 2006.01]		doubly-bound to each other [5, 2006.01]
335/22	• • • being further substituted by carboxyl	381/00	Compounds containing carbon and sulfur and
335/24	groups [5, 2006.01] • • containing any of the groups	5017 00	having functional groups not covered by groups
333724	S X S X		C07C 301/00-C07C 337/00 [5, 2006.01]
	S X S X X X X X X X X X X X X X X X X X	381/02	• Thiosulfates [5, 2006.01]
	o de la companya de	381/04 381/06	 Thiosulfonates [5, 2006.01] Compounds containing sulfur atoms only bound to
DD= /0.6	atom, Y being any atom [5, 2006.01]	301/00	two nitrogen atoms [5, 2006.01]
335/26	• • Y being a hydrogen or a carbon atom, e.g. benzoylthioureas [5, 2006.01]	381/08	 having at least one of the nitrogen atoms acylated [5, 2006.01]
335/28	• • Y being a hetero atom, e.g. thiobiuret [5, 2006.01]	381/10	 Compounds containing sulfur atoms doubly-bound to nitrogen atoms [5, 2006.01]
335/30 335/32	 Isothioureas [5, 2006.01] having sulfur atoms of isothiourea groups bound	381/12	• Sulfonium compounds [5, 2006.01]
333/32	to acyclic carbon atoms [5, 2006.01]	381/14	Compounds containing a carbon atom having four
335/34	having sulfur atoms of isothiourea groups bound		bonds to hetero atoms, with a double bond to one hetero atom and at least one bond to a sulfur atom
	to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]		further doubly-bound to oxygen atoms [5, 2006.01]
335/36	having sulfur atoms of isothiourea groups bound	391/00	Compounds containing selenium [5, 2006.01]
	to carbon atoms of six-membered aromatic rings [5, 2006.01]	391/02	having selenium atoms bound to carbon atoms of six- membered aromatic rings [5, 2006 01]
335/38	containing any of the groups		membered aromatic rings [5, 2006.01]
	şx	395/00	Compounds containing tellurium [5, 2006.01]
	\$-		
	S − × or −N=C−N=C	401/00	Irradiation products of cholesterol or its derivatives;
	or -N=C-N=C		Vitamin D derivatives, 9,10-seco
	[†] X being a hetero		cyclopenta[a]phenanthrene or analogues obtained by chemical preparation without irradiation [5, 2006.01]
225 / 40	atom, Y being any atom [5, 2006.01]		Chemical preparation without irradiation [3, 2000.01]
335/40	 having nitrogen atoms of thiourea or isothiourea groups further bound to other hetero 	403/00	Derivatives of cyclohexane or of a cyclohexene,
	atoms [5, 2006.01]		having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this
335/42	• • Sulfonylthioureas;		part being directly attached to the cyclohexane or
335/44	Sulfonylisothioureas [5, 2006.01] • Sulfenylthioureas;		cyclohexene rings, e.g. vitamin A, beta-carotene,
555, 11	Sulfenylisothioureas [5, 2006.01]	403/02	beta-ionone [5, 2006.01]having side-chains containing only carbon and
337/00	•	705/02	hydrogen atoms [5, 2006.01]
33//00	Derivatives of thiocarbonic acids containing functional groups covered by groups C07C 333/00 or	403/04	• having side-chains substituted by halogen
	C07C 335/00 in which at least one nitrogen atom of	402706	atoms [5, 2006.01]
	these functional groups is further bound to another	403/06	 having side-chains substituted by singly-bound oxygen atoms [5, 2006.01]
	nitrogen atom not being part of a nitro or nitroso group [5, 2006.01]	403/08	• • by hydroxy groups [5, 2006.01]
		403/10	• • by etherified hydroxy groups [5, 2006.01]

403/12	• • by esterified hydroxy groups [5, 2006.01]	409/12	• • • with two alpha, alpha-dialkylmethyl- hydroperoxy groups bound to carbon atoms
403/14	 having side-chains substituted by doubly-bound oxygen atoms [5, 2006.01] 		of the same six-membered aromatic
403/16	 not being part of —CHO groups [5, 2006.01] 		ring [5, 2006.01]
403/18	 having side-chains substituted by nitrogen atoms [5, 2006.01] 	409/14	 the carbon atom belonging to a ring other than a six-membered aromatic ring [5, 2006.01]
403/20	 having side-chains substituted by carboxyl groups [5, 2006.01] 	409/16	 the —O—O— group being bound between two carbon atoms not further substituted by oxygen
403/22	 having side-chains substituted by sulfur 		atoms, i.e. peroxides [5, 2006.01]
1057 22	atoms [5, 2006.01]	409/18	 at least one of the carbon atoms belonging to a
403/24	 having side-chains substituted by six-membered non-aromatic rings, e.g. beta-carotene [5, 2006.01] 		ring other than a six-membered aromatic ring [5, 2006.01]
	aromatic rings, e.g. beta-earotene [5, 2000.01]	409/20	 the —O—O— group being bound to a carbon atom
405/00	Compounds containing a five-membered ring having		further substituted by singly-bound oxygen
100,00	two side-chains in ortho position to each other, and		atoms [5, 2006.01]
	having oxygen atoms directly attached to the ring in	409/22	 having two —O—O— groups bound to the carbon
	ortho position to one of the side-chains, one side-		atom [5, 2006.01]
	chain containing, not directly attached to the ring, a	409/24	• the —O—O— group being bound between a C=O
	carbon atom having three bonds to hetero atoms		group and hydrogen, i.e. peroxy acids [5, 2006.01]
	with at the most one bond to halogen, and the other	409/26	• • Peracetic acid [5, 2006.01]
	side-chain having oxygen atoms attached in gamma-	409/28	 a>C=O group being bound to a carbon atom of a
	position to the ring, e.g. prostaglandins [5, 2006.01]	1037 20	ring other than a six-membered aromatic ring [5, 2006.01]
407/00	Preparation of peroxy compounds [5, 2006.01]	409/30	• • a)C=O group being bound to a carbon atom of a
409/00	Peroxy compounds [5, 2006.01]	.007.00	six-membered aromatic ring [5, 2006.01]
409/02	• the —O—O— group being bound between a carbon	409/32	• the —O—O— group being bound between two C=O
.057 0=	atom, not further substituted by oxygen atoms, and		groups [5, 2006.01]
	hydrogen, i.e. hydroperoxides [5, 2006.01]	409/34	 both belonging to carboxylic acids [5, 2006.01]
409/04	• the carbon atom being acyclic [5, 2006.01]	409/36	• • • Diacetyl peroxide [5, 2006.01]
409/06	Compounds containing rings other than six-	409/38	• the —O—O— group being bound between a C=O
1057 00	membered aromatic rings [5, 2006.01]		group and a carbon atom, not further substituted by
409/08	Compounds containing six-membered aromatic		oxygen atoms, i.e. esters of peroxy acids [5, 2006.01]
100700	rings [5, 2006.01]	409/40	 containing nitrogen atoms [5, 2006.01]
409/10	• • • Cumene hydroperoxide [5, 2006.01]	409/42	 containing sulfur atoms [5, 2006.01]
703/10	cument hydroperoxide [0, 2000.01]	409/44	• • with sulfur atoms directly bound to the —O—O—
			groups, e.g. persulfonic acids [5, 2006.01]